
IV Symposium on

Languages, Applications and Technologies

June 18th and 19th, 2015
Universidad Complutense de Madrid, Spain

Editors:
José-Luis Sierra-Rodríguez
José Paulo Leal
Alberto Simões

ISBN:
978-84-606-8762-7

II

Schedule and Table of Contents

Thursday, 18th June

Time Page

8h45 Registration
9h15 Opening Session

9h30 Keynote I chair: José Paulo Leal
The role of ontologies in machine-machine communication 1
Asunción Gómez

10h40 Coffee Break

Session I: Document Processing chair: José João Almeida

11h00 Tree String Path Subsequences Automaton and Its Use for Indexing XML
Documents . 3
Eliška Šestáková and Jan Janousek

11h25 A structural approach to assess graph-based exercises . 13
José Paulo Leal and Rúben Sousa

11h50 Automatic generation of CVs from Online Social Networks 23
Sérgio Maia Dias, Alda Lopes Gançarski and Pedro Rangel Henriques

12h10 Knowledge Extraction from Requirements Specification 29
Eduardo Barra and Jorge Morato

Session II: Domain-Specific Languages chair: Marjan Mernik

12h30 Domain Specific Languages for Data Mining: A Case Study for Educational
Data Mining . 35
Alfonso de la Vega, Diego García-Saiz, Marta Zorrilla and Pablo Sanchez

12h55 WSDLUD: A Metric to Measure the Understanding Degree of WSDL
Descriptions . 45
M. Berón, H. Bernardis, E. Miranda, D. Riesco, M. J. Varanda Pereira and P. Henriques

13h20 Towards the generation of graphical modelling environments aided by patterns 55
Antonio Garmendia, Ana Pescador, Esther Guerra and Juan De Lara

13h40 Lunch

III

Time Page

Session III: Tools for Natural Language Speech and Text processing
chair: Hugo Gonçalo Oliveira

15h00 Speech Features for Discriminating Stress Using Branch and Bound Wrapper
Search . 61
Mariana Julião, Jorge Silva, Ana Aguiar, Helena Moniz and Fernando Batista

15h25 Oriya Morphological Analyzer Using Lttoolbox . 71
Itisree Jena, Himani Chaudhry and Dipti Misra Sharma

15h50 Yet another suite of multilingual NLP tools . 81
Marcos Garcia and Pablo Gamallo

16h10 Coffee Break

Session IV: Web Technologies and Practical Cases chair: Miguel Areias

16h35 Odin: A Service for Gamification of Learning Activities 91
José Paulo Leal, José Carlos Paiva and Ricardo Queirós

17h00 SplineAPI: Building a REST API for NLP services . 101
Nuno Vieira, Alberto Simões and Nuno Ramos Carvalho

17h25 Engaging researchers in data management with LabTablet, an electronic
laboratory notebook . 111
Ricardo Carvalho Amorim, João Aguiar Castro, João Rocha Da Silva and Cristina Ribeiro

19h30 Visit to Madrid Old Town “Madrid de los Austrias”

21h00 Dinner

IV

Schedule and Table of Contents

Friday, 19th June

Time Page

Session V: Semantic and Text Classification chair: Pablo Gamallo

9h30 Exploiting Twitter for the Semantic Enrichment of Telecommunication
Alarms . 117
Hugo Gonçalo Oliveira, João Marques and Luís Cortesão

9h55 Meaning Inference of Abbreviations Appearing in Clinical Studies 127
E. Chondrogiannis, V. Andronikou, E. Karanastasis and T. Varvarigou

10h20 Experiments on Enlarging a Lexical Ontology . 137
Alberto Simões and José João Almeida

10h40 Using Unstructured Profile Information for Gender Classification of
Portuguese and English Twitter users . 143
Marco Vicente, João Carvalho and Fernando Batista

11h00 Coffee Break

11h20 Keynote II chair: José-Luís Sierra
The Application of Grammar Inference to Software Language Engineering . 149
Marjan Mernik

Session VI: Human-Computer Language Processing
chair: Maria João Varanda Pereira

12h30 Combining Processing with Racket . 151
Hugo Correia and António Menezes Leitão

12h55 On Extending a Full-Sharing Multithreaded Tabling Design with Batched
Scheduling . 163
Miguel Areias and Ricardo Rocha

13h20 An AST-based Tool, Spector, for Plagiarism Detection: The Approach,
Functionality, and Implementation . 173
Vítor T. Martins, Pedro Rangel Henriques and Daniela da Cruz

13h40 Lunch

V

Time Page

Session VII: Semantic Web and Ontologies chair: Pedro Rangel Henriques

15h00 Efficient representation of RDF datasets . 179
Jakub Swacha and Szymon Grabowski

15h25 Reducing large semantic graphs to improve semantic relatedness 189
José Paulo Leal and Teresa Costa

15h50 Enrichment and On-demand Population of Nutritional Ontologies from
XML Diets Repository . 199
Vanesa Espín, Manuel Noguera and Maria V. Hurtado

16h15 Coffee Break

Session VIII: Grammars chair: Jan Janousek

16h35 Browsing the Parse Space . 209
Daniel Rodríguez-Cerezo and José-Luis Sierra

17h00 Assessing Attribute Grammars’ Quality: metrics and a tool 219
João Cruz, Pedro Rangel Henriques and Daniela Da Cruz

17h20 A Syntax-Directed Model Transformation Framework based on
Attribute Grammars . 225
Antonio Sarasa-Cabezuelo and José-Luis Sierra

17h40 Lightning Talks and Demo Session chair: Alberto Simões

19h00 Closing Session

VI

Preface

This volume contains the proceedings of the 4rd edition of SLATE, the 4th Symposium on Lan-
guages, Applications and Technologies, held in the Complutense University of Madrid, Spain,
during 18th–19th June, 2015.

We often use languages. First, to communicate between ourselves. Later, to communicate with
computers. And more recently, with the advent of networks, we found a way to make computers
communicate between themselves. All these different forms of communication use languages, dif-
ferent languages, but that still share many similarities. In SLATE we are interested in discussing
these languages.

Being languages such a broad subject, SLATE is organized in three main tracks:

– HHL Track — Processing Human-Human Languages
HHL is a forum dedicated to the discussion of research projects and ideas involving natural
language processing and their industrial application. In 2015 this track is chaired by Alberto
Simões.

– HCL Track — Processing Human-Computer Languages
HCL is a forum where researchers, developers, educators exchange ideas and information on
the latest academic or industrial work on language design, processing, assessment and appli-
cations. The SLATE’15 HCL chair is José-Luis Sierra-Rodríguez.

– CCL Track — Processing Computer-Computer Languages
CCL main goal is to provide a broad space for discusstion about the XML markup language:
examples of usage and associated technologies. In 2015 this track is chaired by José Paulo Leal.

In this 4th edition we received a total of 40 full paper submissions and 7 short paper submissions.
After a thorough peer-review process, in which each paper was reviewed by three anonymous
reviewers, 17 papers were accepted as full papers (about 42% of full paper acceptance rate). In
addition, 10 full papers were invited to resubmit as short papers, and 9 short papers were finally
accepted for publication and presentation at the symposium (about 52% of short paper acceptance
rate).

SLATE’15 presentations has been divided in the following eight sessions: Document Process-
ing (CCL), Domain-Specific Languages (HCL), Tools for Natural Language Speech and Text Pro-
cessing (HHL), Web Technologies and Practical Cases (CCL), Semantic and Text Classification
(HHL), Human-Computer Language Processing (HCL), Semantic Web and Ontologies (CCL),
and Grammars (HCL). In addition, a Lightning Talks and Demo Session has been also included
for allowing late-breaking presentations and tool demos. Finally, SLATE 2015 program also in-
cludes two keynotes: one on the application of grammar inference to software language engineer-
ing, by Marjan Mernik from University of Maribor, Slovenia, and another on the role of ontologies
in machine-machine communication, by Asunción Gómez from Technical University of Madrid,
Spain.

VII

The organizers of SLATE 2015 want to thank to many people without whom this event would
never be posible. In particular, the UCM’s Faculty of Philology for serving as venue of the Sympo-
sium; the UCM’s Computer Science School for sponsoring the keynotes through its PhD. Program
Conference Cycle; the UCM’s General Foundation for being in charge of the finances of the event;
the Madrid City Council by organizing the Symposium social activity; the Santander-UCM re-
search grants by partially funding one of the keynotes; the members of the ILSA (Implementation
of Language-Driven Software and Applications) Research Group by their collaboration in the lo-
cal organization of the event; Springer by giving us the oportunity of editing a post-proceeding
volumen as part of the CCIS series; COMLAN and COMSIS journals by accepting submissions
of revised and extended versions of the best papers presented at the symposium; the Easychair con-
ference management system; the Program Committee members for spending their time reviewing
the papers and writing the reports; the authors of the submitted papers for their contribution and
interest in the symposium and, finally, to all participants that came to Madrid to such a fruitful
meeting.

José-Luis Sierra-Rodriguez
José Paulo Leal
Alberto Simões

VIII

Committees

General Chair

– José-Luis Sierra-Rodríguez (Universidad Complutense de Madrid, Spain)

HHL Program Committee

– Alberto Simões (Universidade do Minho, Portugal, track chair)
– António Teixeira (Universidade de Aveiro, Portugal)
– Brett Drury (Universidade de São Paulo, Brasil)
– Fernando Baptista (Instituto Universitário de Lisboa, Portugal)
– Hugo Gonçalo Oliveira (Universidade de Coimbra, Portugal)
– Jörg Tiedemann (Uppsala Universitet, Sweden)
– Jorge Baptista (Universidade do Algarve, Portugal)
– José João Almeida (Universidade do Minho, Portugal)
– Lluís Padró (Universitat Politècnica de Catalunya, Spain)
– Octavian Popescu (IBM, Watson Research Centre, NY, USA)
– Pablo Gamallo (Universidade de Santiago de Compostela, Spain)
– Thiago Pardo (Universidade de São Paulo, Brasil)
– Ulrich Heid (Universität Stuttgart, Germany)
– Xavier Gómez Guinovart (Universidade de Vigo, Spain)

HCL Program Committee

– Alda Lopes Gançarski (Institut National des Télécommunications, France)
– António Menezes Leitão (Universidade Técnica de Lisboa, Portugal)
– Bostjan Slivnik (Univerza v Ljubljani, Slovenia)
– Casiano Rodriguez-Leon (Universidad de La Laguna, Spain)
– Daniela da Cruz (Universidade do Minho, Portugal)
– Ivan Lukovic (University of Novi Sad, Serbia)
– Guido Wachsmuth (Delft University of Technology, Netherlands)
– Jan Kollar (Technical University of Kosice, Slovakia)
– Jan Janousek (Czech Technical University, Czech Republic)
– Jaroslav Poruban (Technical University of Kosice, Slovakia)
– Jean-Cristophe Filliâtre (Laboratoire de Recherche en Informatique, France)
– João Paiva Cardoso (Universidade do Porto, Portugal)
– José Luis Sierra (Universidad Complutense de Madrid, Spain, track chair)
– Josep Silva (Universidad Politécnica de Valencia, Spain)
– Maria João Varanda Pereira (Instituto Politécnico de Bragança, Portugal)
– Mario Beron (Universidad Nacional de San Luis, Argentina)
– Marjan Mernik (Univerza v Mariboru, Slovenia)
– Nuno Oliveira (Universidade do Minho, Portugal)
– Nuno Ramos (Universidade do Minho, Portugal)
– Paulo Matos (Instituto Politécnico de Bragança, Portugal)
– Pedro Rangel Henriques (Universidade do Minho, Portugal)
– Ricardo Rocha (Universidade do Porto, Portugal)
– Salvador Abreu (Universidade de Évora, Portugal)
– Simão Melo de Sousa (Universidade da Beira Interior, Portugal)

IX

CCL Program Committee

– Alda Lopes Gançarski (Institut Mines-Telecom, Telecom SudParis, CNRS UMR Samovar,
France)

– Alexander Paar (TWT GmbH Science & Innovation, Germany)
– Cristina Ribeiro (Universidade do Porto, Portugal)
– Daniel Diaz (University of Paris 1 - Pantheon Sorbonne, France)
– Eugenijus Kurilovas (Centre of Information Technologies in Education, Lithuania)
– Gabriel David (Universidade do Porto, Portugal)
– Giovani Librelotto (Universidade Federal de Santa Maria, Brazil)
– João Correia Lopes (Universidade do Porto, Portugal)
– José Carlos Ramalho (Universidade do Minho, Portugal)
– José Paulo Leal (Universidade do Porto, Portugal, track chair)
– Pedro Rangel Henriques (Universidade do Minho, Portugal)
– Peter Sloep (Open Universiteit, Netherlands)
– Ricardo Queirós (Instituto Politécnico do Porto, Portugal)
– Salvador Abreu (Universidade de Évora, Portugal)

Additional reviewers

– Antonio Navarro (Universidad Complutense de Madrid, Spain)
– Antonio Sarasa-Cabezuelo (Universidad Complutense de Madrid, Spain)
– Félix Buendía (Universidad Politécnica de Valencia, Spain)
– Helena Moniz (INESC-ID, Portugal)
– Maha Khemaja (ISSATSo - University of Sousse, Túnez)
– Marcos Garcia (Universidade de Santiago de Compostela, Spain)
– Miguel Anxo Solla Portela (Universidade de Vigo, Spain)
– Vicente Blanco (Universidad de La Laguna, Spain)

Organization Committee

– Pedro Rangel Henriques (Universidade do Minho, Portugal)
– José Paulo Leal (Universidade do Porto, Portugal)
– Alberto Simões (Universidade do Minho, Portugal)
– Maria João Varanda (Instituto Politécnico de Bragança, Portugal)
– José-Luis Sierra-Rodríguez (Universidad Complutense de Madrid, Spain)
– Antonio Sarasa-Cabezuelo (Universidad Complutense de Madrid, Spain)
– Antonio Pareja-Lora (Universidad Complutense de Madrid, Spain)
– Ana Fernandez-Pampillon (Universidad Complutense de Madrid, Spain)
– Daniel Rodríguez-Cerezo (Universidad Complutense de Madrid, Spain)

X

The role of ontologies in
machine-machine communication

Asunción Gómez

Universidad Politécnica de Madrid, Spain
asun@fi.upm.es

Abstract. In this talk I will analyse how the use of ontologies have
evolved during the last two decades, moving from the notion of a shared
understanding of a particular domain being used to communicate humans
with computers towards a key modelling component that allows machine-
machine communication and negotiation across different domains and
spoken languages.

Biography. Prof. Dr. Asunción Gómez-Pérez is Full Professor at the
Univ. Politécnica de Madrid. She is the Director of the Artificial Intelli-
gence Department (2008) and Director or the OEG at UPM (1995). Her
main research areas are: Ontological Engineering, Semantic Web and
Knowledge Management. She led at UPM the following EU projects:
Ontoweb, Esperonto, Knowledge Web, NeOn, SEEMP, OntoGrid, AD-
MIRE, DynaLearn, SemSorGrid4Env, SEALS and MONNET. She co-
ordinated OntoGrid and now she is coordinating SemSorGrid4Env and
SEALS. She is also leading at UPM projects funded by Spanish agencies.
The most relevants are: España Vitual, WEBn+1, GeoBuddies and the
Spanish network on Semantic Web. She has published more than 150
papers and she is author of one book on Ontological Engineering and
co-author of a book on Knowledge Engineering. She has been co-director
of the summer school on Ontological Engineering and the Semantic Web
since 2003 up to now. She was program chair of ASWC’09, ESWC’05
and EKAW’02 and co-organiser of many workshops on ontologies.

IV Symposium on Languages Applications and Technologies Pages 1–2
18th and 19th June, Madrid, Spain 978-84-606-8762-7

2 Asunción Gómez

SLATE’2015

Tree String Path Subsequences Automaton and

Its Use for Indexing XML Documents

Elǐska Šestáková and Jan Janoušek ⋆

Department of Theoretical Computer Science, Faculty of Information Technology
Czech Technical University in Prague, Thákurova 9, 160 00 Praha 6, Czech Republic

{Eliska.Sestakova,Jan.Janousek}@fit.cvut.cz

Abstract. The theory of text indexing is well-researched, which does
not hold for theories of indexing other data structures, such as trees
for example. In this paper a simple method of indexing a tree for sub-
sequences of string paths in the tree by finite automaton is presented.
The use of the index is shown on indexing XML documents for XPath
descendant-or-self axis inspired queries. Given a subject tree T with n
nodes, the tree is preprocessed and an index, which is a directed acyclic
subsequence graph for a set of strings, is constructed. The searching
phase uses the index, reads an input string path subsequence inspired
by the specific XPath query of size m and computes the list of positions
of all occurrences of P in the tree T . The searching is performed in time
O(m) and does not depend on n. Although the number of distinct valid
queries is O(2n), the size of the index is O(hk), where h is the height of
the tree T and k in the number of its leafs. Moreover, we discuss that in
the case of indexing a common XML document the size of the index is
even smaller O(h× 2k).

1 Introduction

Indexing a data subject preprocesses the subject and constructs an index that
allows to efficiently answer queries related to the content of the subject. For
example, occurrences of input patterns in the subject can be located repeatedly
and quickly, in time typically not depending on the size of the subject.

The theory of text indexing, which is a result of Stringology research [5, 6],
is well-researched and uses many sophisticated data structures: suffix tree and
suffix array are most widely used structures for text indexing for substrings, pro-
viding efficient solutions for a wide range of applications. The Directed Acyclic
Word Graph [2], also known as suffix (or factor) automaton, is another elegant
structure. An index of a text for subsequences is represented by a subsequence
automaton [1], which is also referred as Directed Acyclic Subsequence Graph
(DASG).

⋆ This research has been partially supported by the Czech Science Foundation (GAČR)
as project No. GA-13-03253S and by Technology Agency of the Czech Republic
(TAČR) as project No. TA03010964 in α programme.

IV Symposium on Languages Applications and Technologies Pages 3–12
18th and 19th June, Madrid, Spain 978-84-606-8762-7

The theories of indexing other data structures, such as trees for example,
have not been developed in so many details and for so many indexing problems
as in the case of indexing texts, although many practical applications serving
as indexes of trees exist. Among others, a theory of indexing a data structure
allows to understand the problem better, to find efficient solutions for particular
indexing problems and to combine various indexes for the construction of indexes
for unions, intersections, concatenations and other operations. In this last aspect,
especially the use of the Theory of formal languages and automata is very helpful.

An XML document represents a tree hierarchical structure. To be able to re-
trieve the data from XML documents efficiently, various query languages, such
as XPath, XPointer and XLink, have been designed. Indexing the structure of
XML data is an effective way to accelerate XML query processing and several
XML documents indexes have been introduced. These indexes of XML docu-
ments can be divided into the following four categories. 1. Graph-based meth-
ods construct a structural path summary that can be used to improve query
efficiency, especially for single path queries. To this category we can classify fol-
lowing methods: DataGuides [8], 1-Index [17], PP-Index [20], F&B-Index [12]
or MTree [18]. 2. Sequence-based methods transform both the source data and
query into sequences. Therefore, querying XML data is equivalent to finding
subsequence matches. To this category we can classify following methods: ViST
[22], PRIX [19]. 3. Node coding methods apply certain coding strategy to de-
sign codes for each node in order that the relationship among nodes can be
evaluated by computation. To this category we can classify, for example, XISS
[13] method. 4. Adaptive methods can adapt their structure to suit the query
workload. Therefore, adaptive methods index only the frequently used queries.
To this category we can classify APEX Index [4], for example. Each of these
methods has its own advantages and disadvantages, however, shortcomings do
exist: path-based methods often possess a lack of supporting complex queries;
sequence-based methods are likely to generate approximate solutions, thus re-
quiring a great deal of validation; node coding method is very difficult to be
applied to ever changing data source and adaptive methods perform low effi-
ciency on non-frequent query.

In this paper we show that automata can be used efficiently for the purpose
of indexing XML documents. Here, we consider to support only linear XPath
queries. However, the techniques described here are relevant to the general XPath
processing problem, for two reasons. First, processing linear expressions is a
subproblem in processing more complex queries as we can decompose them into
linear fragments. Second, this can be seen as a building block for more powerful
pushdown automata that are able to process branching queries [14]. Moreover,
it is easy to combine the index presented in this paper with our linear index of
a tree for tree patterns, which represent connected subgraphs in a tree [11].

We introduce Tree String Path Subsequences Automaton that accepts and
indexes all subsequences of string paths in the tree, ie. all linear XPath queries
using descendant-or-self axis (//). The searching phase uses the index, reads an
input string path subsequence inspired by the specific XPath query of size m

4 Eliška Šestáková and Jan Janousek

SLATE’2015

and computes the list of positions of all occurrences of P in the tree T . The
searching is performed in time O(m) and does not depend on n. Although the
number of distinct valid queries is O(2n), the size of the index is O(hk), where h
is the height of the tree T and k in the number of its leafs. Moreover, we discuss
that in the case of indexing a common XML document the size of the index is
even smaller O(h× 2k).

Throughout the paper we use notations as are defined in standard texts such
as [9].

2 Tree String Path Subsequences Automaton

As stated in the Introduction a Tree String Path Subsequences Automaton ef-
ficiently evaluates all linear XPath queries where just descendant-or-self axis
(//) is used. For an XML document of size n, the automaton processes a query
of size m in time linear in m and not depending on n. The most similar ap-
proaches from XML indexing techniques are graph-based methods constructing
a structural path summary [8, 20], which usually need further tree traversal to
support queries containing // axis. Furthermore, our index is based on the idea
of automata, which makes it well understandable.

We model an XML document as an ordered labelled tree where nodes corre-
spond to elements, and edges represent element inclusion relationships. Hence,
we only consider the structure of XML documents, and, therefore, will ignore
attributes and the text in the leaf nodes. A node in an XML data tree is rep-
resented by a pair (label, id), where id and label represent its identifier and tag
name respectively. Without loss of generality, we have chosen to use a preorder
numbering scheme to uniquely assign an identifier to each of the tree nodes.

Example 1. Consider following sample of an XML document D. Figure 1 shows
its corresponding XML data tree T .

<HOUSES>

<HOUSE name="Stark">

<LORD>Eddard Stark</LORD>

<SIGIL>Direwolf</SIGIL>

<SEAT>Winterfell</SEAT>

<VASSALS>

<HOUSE name="Karstark">

<LORD>Rickard Karstark</LORD>

<SEAT>Karhold</SEAT>

</HOUSE>

</VASSALS>

</HOUSE>

<HOUSE name="Targaryen">

<LORD>Daenerys Targaryen</LORD>

<SIGIL>Dragon</SIGIL>

</HOUSE>

</HOUSES>

Tree String Path Subsequences Automaton and Its Use for Indexing XML Documents 5

SLATE’2015

HOUSES,1

HOUSE,2

LORD,3 SIGIL,4 SEAT,5 VASSALS,6

HOUSE,7

LORD,8 SEAT,9

HOUSE,10

LORD,11 SIGIL,12

Fig. 1. XML data tree of an XML document from Example 1. Nodes are denoted by
their preorder numbers.

As we attempt to index linear queries only, we can omit the branching struc-
ture and describe the XML data tree by means of its linear fragments, called
String Paths. To satisfy queries with // axis we are interested in (non-empty)
subsequences of String Paths.

Definition 1 (String Path). A String Path P = p1p2 . . . pk, k ≥ 1, over an
XML data tree T is a linear path leading from a root p1 to a leaf pk. Each element
pi of the path is associated with an identifier, denoted by pi.id, corresponding with
a preorder number of the element.

Definition 2 (String Paths Set). Let D and T be an XML document and its
XML data tree respectively. The set of all String Paths over T is called String
Paths Set, denoted as PT = {P1, P2 . . . Pw}, where w = wD.

Example 2. Consider the XML data tree in Figure 1. The String Paths Set
PT is defined as follows with identifiers associated with each element shown in
parenthesis.

PT = {
HOUSES(1) HOUSE(2) LORD(3),

HOUSES(1) HOUSE(2) SIGIL(4),

HOUSES(1) HOUSE(2) SEAT(5),

HOUSES(1) HOUSE(2) VASSALS(6) HOUSE(7) LORD(8),

HOUSES(1) HOUSE(2) VASSALS(6) HOUSE(7) SEAT(9),

HOUSES(1) HOUSE(10) LORD(11),

HOUSES(1) HOUSE(10) SIGIL(12)

}

6 Eliška Šestáková and Jan Janousek

SLATE’2015

Definition 3 (Subsequence of a String Path). Let P = p1p2 . . . pk be a
String Path. A subsequence of P is any sequence of elements pi obtainable by
deleting zero or more elements from P .

Example 3. Let P = HOUSES HOUSE LORD be a String Path. There are 7 non-
empty subsequences of P : HOUSES HOUSE LORD, HOUSES HOUSE, HOUSES LORD,

HOUSE LORD, HOUSES, HOUSE, LORD.

A Tree String Path Subsequences Automaton is a Subsequence Automaton
[1] for a set of strings that are String Paths of an XML data tree representing
the XML document being indexed. The automaton solving the problem of sub-
sequences for both single and multiple strings is also referred as DASG and is
further studied in [7, 10]. Therefore, we propose an XML index problem to be
another application area of DASG.

There exist three building algorithms for DASG for a set of strings available:
right-to-left [1], left-to-right and on-line [10]. However, none of them is based on
a subset construction, which gives a set of positions as answers of queries.

Therefore, we propose a construction of a Tree String Path Subsequences
Automaton consisting of two steps. First, deterministic Subsequence Automata
accepting set of non-empty subsequences for each String Path in PT are con-
structed using subset construction. Second, a Tree String Path Subsequences
Automaton is built as the union of constructed Subsequence Automata.

To build the deterministic Subsequence Automaton, we propose two building
algorithms: Algorithm 1 and Algorithm 2 (direct subset construction of deter-
ministic Subsequence Automaton). Resulting automata are used to build the
Tree String Path Subsequences Automaton by Algorithm 3.

Data: A String Path P = p1p2 . . . pk.
Result: A deterministic finite automaton accepting all non-empty subsequences

of P .
1. Construct a finite automaton M1 = (Q1,A, δ1, 0, F1) accepting all prefixes of P :

(a) Q1 = {0, p1.id, p2.id, . . . pk.id},
(b) A is a set of different element labels in P with // prefix added,
(c) δ1(i− 1, //pi) = pi.id, ∀i = 1, 2 . . . k,
(d) F1 = {1, 2, . . . k}.

2. Insert ε-transitions into the automaton M1 leading from each state to its next
state. Resulting automaton M2 = (Q2,A, δ2, 0, F2), where
(a) Q2 = Q1, F2 = F1,
(b) δ2 = δ1 ∪ δ′ and δ′(i− 1, ε) = i, ∀i = 1, 2, . . . k .

3. Eliminate all ε-transitions. The resulting automaton is M3.
4. Construct a deterministic finite automaton M equivalent to M3 using standard

determinization algorithm based on subset construction.

Algorithm 1: Construction of a Subsequence Automaton for a single String
Path.

Tree String Path Subsequences Automaton and Its Use for Indexing XML Documents 7

SLATE’2015

In order to speed up the Subsequence Automaton construction, we simplify
the previous Algorithm and propose a direct subset construction of a determin-
istic Subsequence Automaton for a single String Path described by Algorithm 2.

Definition 4 (A set of occurrences of an element in a String Path).
Let P = p1p2 . . . pk be a String Path and e be an element occurring at several
positions in P (e.g., pi = e for some i). A set of occurrences of the element e in
P is a totally ordered set OP (e) = {o | o = pi.id ∧ pi = e, i = 1, 2, . . . k}. The
ordering is equal to ordering of element prefix identifiers as natural numbers.

Definition 5 (ButFirst). Let P and O(e) = {o1, o2, . . . ok} be a be a String
Path and a set of occurrences of an element e in a String Path P , respectively.
Then we define a function ButF irst(O(e)) = {o2, . . . ok}.

Data: A String Path P = p1p2 . . . pk.
Result: A deterministic finite automaton accepting all non-empty subsequences

of P .
1. Let E = {e1, e2, . . . ez}, where z ≤ k be a set of element labels occurring in P .
2. ∀ei ∈ E compute O(ei) (the set of occurrences of ei in P).
3. Construct finite automaton M = (Q,A, δ, q0, F) accepting all prefixes of a

string P :
(a) Q = {q0, q1, . . . qk},
(b) A = {//e1, //e2, . . . //ez},
(c) q0 = 0 and ∀pi, where i = 1, 2, . . . k:

i. set state qi = O(pi)
ii. add δ(qi−1, //pi) = qi
iii. O(pi) = ButF irst(O(pi))

(d) F = {q1, q2, . . . qk}.
4. Insert additional transitions into the automaton M :

(a) ∀qi∀ej , where i = 0, 1, . . . k − 1 and j = 1, 2 . . . z:
i. add δ(qi, //ej) = qs, if there exists such s > i where

δ(qs−1, //ej) = qs ∧ ¬∃r < s : δ(qr−1, //ej) = qr
ii. δ(qi, //ej) = ∅ otherwise.

Algorithm 2: A direct subset construction of a Subsequence Automaton for
a single String Path.

Theorem 1. Given a String Path P = p1p2 . . . pk, Algorithm 2 correctly con-
structs a deterministic finite automaton accepting all non-empty subsequences of
P .

Proof. In [21].

We now introduce the definition of a Flexible String Path query and its
validity, which is useful for describing the language that Tree String Path Sub-
sequences automaton accepts.

8 Eliška Šestáková and Jan Janousek

SLATE’2015

Definition 6 (Flexible String Path query). A Flexible String Path query
over an XML document D is a linear expression generated by the following
context–free grammar:

G = ({Q,E},A, P,Q)

where A = {//e1, //e2, . . . //en } and e1, e2 . . . en are different element names
that occur in D. The production rules P are defined as follows:

1. Q → E | QQ
2. E → //e1 | //e2 | . . . | //en

Definition 7 (Validity of Flexible String Path query). A Flexible String
Path query Q over an XML document D is valid if and only if there exists
a non-empty set of elements in D satisfying the query. Otherwise, Q is called
invalid.

Example 4. Let D be an XML document from Example 1. A Flexible String
Path query //HOUSE//LORD is valid because there exist three elements satisfying
the query. However, the query //SIGIL//LORD is invalid as no elements satisfy
the query.

Definition 8. Let D be an XML document. A Tree String Path Subsequence
Automaton accepts all valid Flexible String Path queries of D.

Data: A String Paths Set PT = {P1, P2, . . . Pl}.
Result: A deterministic finite automaton accepting all valid Flexible String

Paths queries.
1. Construct finite automata Mi = (Qi,Ai, δi, 0, Fi) accepting set of non-empty

subsequences of Pi, nSub(Pi), for i = 1, 2, . . . n using Algorithm 2.
2. Construct deterministic finite Tree String Path Subsequence Automaton

M = (Q,A, δ, 0, F) accepting set of
nSub(PT) = nSub(P1) ∪ nSub(P2) ∪ . . . nSub(Pl).

Algorithm 3: Construction of a Tree String Path Subsequence Automaton
for an XML document D and its corresponding XML data tree T .

Example 5. Let D a T by an XML document and XML data tree from Example
1 and Figure 1, respectively. The corresponding Tree String Path Subsequences
Automaton accepting all valid Flexible String Paths queries, constructed by
Algorithm 3, is shown in Figure 2.

3 Time and space complexities

It is clear that the number of valid Flexible String Path queries is exponential
in the number of nodes of the XML data tree. Each state of a Tree String

Tree String Path Subsequences Automaton and Its Use for Indexing XML Documents 9

SLATE’2015

Path Subsequences Automaton corresponds to an answer of a single query or a
collection of queries. Although the number of different queries accepted by Tree
String Path Subsequences Automaton is exponential, usually a lot of the queries
are equivalent (e.g, their result set of elements are equal).

Therefore, the equivalence problem of queries is closely related to the prob-
lem of determination the number of states of a Tree String Path Subsequences
Automaton. That is, if we know the number of unique query answers, we can con-
struct a deterministic automaton answering all queries using exactly this number
of states. On the other hand, we can obviously use the Tree String Path Sub-
sequences Automaton to decide equivalence of two queries and even determine
equivalence classes.

The containment and equivalence problems for a fragment of the XPath query
language was studied in [15, 16]. For linear XPath queries using descendant-or-
self axis // only, a PTIME containment algorithm was provided by Buneman et
al. in [3].

0start 1 2, 7, 10

3, 8, 11

5, 9

4, 12

6 7 8

9

//HOUSES

//HOUSE

//VASSALS

//LORD

//SEAT

//SIGIL

//HOUSE

//VASSALS

//LORD

//SEAT

//SIGIL

//VASSALS

//LORD

//SEAT

//SIGIL

//HOUSE

//HOUSE

//LORD

//SEAT

//LORD

//SEAT

Fig. 2. Deterministic Tree String Path Subsequence Automaton

From another point of view, we can examine the number of states of a Tree
String Path Subsequences Automaton as the size of DASG for a set of strings.
For k strings of length h, the number of states can be trivially bounded by O(hk)
(size of a product of k automata with O(h) states). The running time for a query
of length m becomes O(m). The lower bound for k > 2 texts in not known, while

10 Eliška Šestáková and Jan Janousek

SLATE’2015

Crochemore and Tronicek in [7] showed that Ω(h2) states are required for k = 2
at the worst case. Considering an XML index problem, k is a number of leaves in
an XML data tree and h is its tree height. Even, for a common XML document,
in which the same nodes can only appear at the same level of the document, the
size of the index is even smaller O(h× 2k). This is the asymptotic upper bound
and we note that the size of the index is much smaller for many XML documents
according to our experimental results [21].

4 Conclusion

Tree String Path Subsequences Automaton has been introduced. This automa-
ton is suitable for indexing XML documents for XPath descendant-or-self axis
inspired queries and for easily combining the automaton with other tree indexes
based on the automata theory.

References

[1] Ricardo A. Baeza-Yates. Searching subsequences. Theoretical Computer
Science, 78(2):363 – 376, 1991.

[2] Anselm Blumer, J. Blumer, David Haussler, Andrzej Ehrenfeucht, M. T.
Chen, and Joel I. Seiferas. The smallest automaton recognizing the sub-
words of a text. Theor. Comput. Sci., 40:31–55, 1985.

[3] Peter Buneman, Susan Davidson, Wenfei Fan, Carmem Hara, and Wang-
Chiew Tan. Reasoning about keys for xml. In Giorgio Ghelli and Gsta
Grahne, editors, Database Programming Languages, volume 2397 of Lec-
ture Notes in Computer Science, pages 133–148. Springer Berlin Heidelberg,
2002.

[4] Chin-Wan Chung, Jun-Ki Min, and Kyuseok Shim. Apex: An adaptive path
index for xml data. In Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’02, pages 121–132, New
York, NY, USA, 2002. ACM.

[5] Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms
on strings. Cambridge Univ Pr, 2007.

[6] Maxime Crochemore and Wojciech Rytter. Text Algorithms. Oxford Uni-
versity Press, 1994.

[7] Maxime Crochemore and Zdenek Tronicek. On the size of dasg for multiple
texts. In AlbertoH.F. Laender and ArlindoL. Oliveira, editors, String Pro-
cessing and Information Retrieval, volume 2476 of Lecture Notes in Com-
puter Science, pages 58–64. Springer Berlin Heidelberg, 2002.

[8] Roy Goldman and Jennifer Widom. Dataguides: Enabling query formula-
tion and optimization in semistructured databases. 1997.

[9] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to automata theory, languages, and computation. Addison-Wesley, Boston,
2nd edition, 2001.

Tree String Path Subsequences Automaton and Its Use for Indexing XML Documents 11

SLATE’2015

[10] H. Hoshino, A. Shinohara, M. Takeda, and S. Arikawa. Online construction
of subsequence automata for multiple texts. In String Processing and In-
formation Retrieval, 2000. SPIRE 2000. Proceedings. Seventh International
Symposium on, pages 146–152, 2000.

[11] Jan Janousek, Borivoj Melichar, Radomı́r Polách, Martin Poliak, and Jan
Trávńıcek. A full and linear index of a tree for tree patterns. In Hel-
mut Jürgensen, Juhani Karhumäki, and Alexander Okhotin, editors, De-
scriptional Complexity of Formal Systems - 16th International Workshop,
DCFS 2014, Turku, Finland, August 5-8, 2014. Proceedings, volume 8614
of Lecture Notes in Computer Science, pages 198–209. Springer, 2014.

[12] Raghav Kaushik, Philip Bohannon, Jeffrey F Naughton, and Henry F Ko-
rth. Covering indexes for branching path queries. In Proceedings of the
2002 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’02, pages 133–144, New York, NY, USA, 2002. ACM.

[13] Quanzhong Li and Bongki Moon. Indexing and querying xml data for reg-
ular path expressions. In Proceedings of the 27th International Conference
on Very Large Data Bases, VLDB ’01, pages 361–370, San Francisco, CA,
USA, 2001. Morgan Kaufmann Publishers Inc.

[14] Bořivoj Melichar, Jan Janoušek, and Tomáš Flouri. Arbology: trees and
pushdown automata. Kybernetika, 48, No.3:402–428, 2012.

[15] Gerome Miklau and Dan Suciu. Containment and equivalence for an xpath
fragment. In Proceedings of the Twenty-first ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS ’02, pages
65–76, New York, NY, USA, 2002. ACM.

[16] GeromeMiklau and Dan Suciu. Containment and equivalence for a fragment
of xpath. J. ACM, 51(1):2–45, January 2004.

[17] Tova Milo and Dan Suciu. Index structures for path expressions. In Catriel
Beeri and Peter Buneman, editors, Database Theory ICDT99, volume 1540
of Lecture Notes in Computer Science, pages 277–295. Springer Berlin Hei-
delberg, 1999.

[18] P. Mark Pettovello and Farshad Fotouhi. Mtree: An xml xpath graph index.
In Proceedings of the 2006 ACM Symposium on Applied Computing, SAC
’06, pages 474–481, New York, NY, USA, 2006. ACM.

[19] P. Rao and B. Moon. Prix: indexing and querying xml using prufer se-
quences. In Data Engineering, 2004. Proceedings. 20th International Con-
ference on, pages 288–299, March 2004.

[20] Nan Tang, J.X. Yu, M.T. Ozsu, and Kam-Fai Wong. Hierarchical indexing
approach to support xpath queries. In Data Engineering, 2008. ICDE 2008.
IEEE 24th International Conference on, pages 1510–1512, April 2008.

[21] Elǐska Šestáková. Indexing XML documents. Master’s thesis, Czech Techni-
cal University in Prague, Faculty of Information Technology, Prague, 2015.

[22] Haixun Wang, Sanghyun Park, Wei Fan, and Philip S. Yu. Vist: A dynamic
index method for querying xml data by tree structures. In Proceedings of
the 2003 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’03, pages 110–121, New York, NY, USA, 2003. ACM.

12 Eliška Šestáková and Jan Janousek

SLATE’2015

A structural approach to assess
graph-based exercises

José Paulo Leal and Rúben Sousa

CRACS & INESC-Porto LA, Faculty of Sciences,
University of Porto, Portugal

zp@dcc.fc.up.pt up201001961@fc.up.pt

Abstract. This paper proposes a structure driven approach to assess
graph-based exercises. Given two graphs, a solution and an attempt of
a student, this approach computes a mapping between the node sets of
both graphs that maximizes the student’s grade, as well as a descrip-
tion of the differences between the two graph. The proposed algorithm
uses heuristics to test the most promising mappings first and prune the
remaining when it is sure that a better mapping cannot be computed.
The proposed algorithm is applicable to any type of document that can
be parsed into its graph-inspired data model. This data model is able
to accommodate diagram languages, such as UML or ER diagrams, for
which this kind of assessment is typically used. However, the motivation
for developing this algorithm is to combine it with other assessment
models, such as the test case model used for programming language
assessment.
The proposed algorithm was validated with thousands of graphs with
different features produced by a synthetic data generator. Several exper-
iments were designed to analyse the impact of different features such as
graph size, and amount of difference between solution and attempt.

Keywords: automatic assessment, graph comparison, graph-based ex-
ercises

1 Introduction

Graphs are mathematical structures that model relationships among objects.
They can be used in a wide range of domains such as network topology, software
architecture, digital circuit design, just to mention a few. Diagrams are an apt
example of a document type with a graph-based representation that requires au-
tomatic assessment. However, graphs can be used for assessing exercises where
the relationship among parts is important but not determinant. Finite Deter-
ministic Automata (FDA) and even programming languages are examples of this
kind of assessment.

The assessment of an FDA should be twofold [2], based on the recognized
strings and on the structure of the state automaton. If an FDA recognizes all the
strings it should, and only those, then it must be correct. Otherwise, examples

IV Symposium on Languages Applications and Technologies Pages 13–22
18th and 19th June, Madrid, Spain 978-84-606-8762-7

of strings that should be recognized but are not, and vice versa, can be auto-
matically generated. However, these examples seldom contribute to overcome
the error. An helpful feedback must pinpoint what is wrong. For instance, what
nodes are missing or what transitions must be removed. This can be achieved
using graph assessment since the structure of an FDA can be represented by a
state automaton [2].

Programming language assessment would also benefit from a similar ap-
proach. The standard way of assessing a program [4] is to compile it and then
execute it with a set of test cases. A program is considered correct if it com-
piles without errors and the output of each execution is what is expected. If
it is incorrect then the most this approach can provide are examples of input
that generates wrong output. It cannot pinpoint the errors in the code of the
program. An attempt to make this kind of assessment should be based on the
structure of the program, specifically on its abstract semantic graph.

The ultimate goal of the research presented in this paper is to define a gen-
eral methodology for assessing graph-based exercises, applicable to a wide range
of domains including FDAs, programming languages but also diagrams. The ob-
jective of this paper is to propose a graph assessment algorithm and to evaluate
its efficiency for graphs with the size typically used in automated assessment.

The proposed assessment algorithm is based on the graph structure. This
means that it actually computes the mapping between the node sets of both
graphs that best preserves their edges. To avoid checking a large number of
mappings it iterates over them testing the most promising first. The mappings
are iterated in an order that allows the algorithm to prune the majority of
them, when it is ensured that the remaining mappings cannot produce a better
mapping. The iteration order is driven by the types and properties of nodes.

The remainder of this paper is organized as follows. Section 2 surveys the
existing literature on assessment of graph-based exercises. Section 3 describes
the proposed algorithm, including the definition of the data structures to repre-
sent graph based exercises and their assessment. This approach is validated in
Section 4 using a graph generator to test the applicability of the proposed al-
gorithm. Finally, Section 5 highlights both the main contributions of this paper
and the work ahead to apply this form of assessment in different scenarios.

2 Related work

This section surveys the existing literature on automatic diagram assessment. To
the best of the authors’ knowledge, no general algorithm for the assessment of
graph-based documents has yet been proposed. The existing proposals are tar-
geted solely to diagrams, and focus mostly their labels rather than their struc-
ture.

Most of the available automatic diagram assessment systems were designed
for a specific diagram type. Examples of these single diagram types addressed
by existing systems are deterministic finite automata (DFA) [2, 6], UML class

14 José Paulo Leal and Rúben Sousa

SLATE’2015

diagrams [1, 7], UML use case diagrams [10], Entity-Relationship diagrams [3],
among others.

All these systems determine a mapping between nodes of solution graph and
nodes the student’s answer. The easiest approach is to use a fix set of labels in
both graphs. For instance, the exercise descriptions used in assessment system
proposed by Soler [7] for UML class diagrams requires fixing the class names
used by students. Finding a mapping between the node sets of both graph is
thus straightforward. A variant of this approach is the assessment in stages that
Ali et al. [1] proposed. This system will not advance to the next stage until
the current one is completely correct, otherwise it reports feedback on what
is wrong or missing. The considered stages are: structural analysis, verification
process and a language checking. The first stage compares the number of nodes,
attributes and operation, and their types. The second stage checks if connections
have the correct source and target type. Knowing that the graph structure is
correct (by the two stages above), the system checks if the labels in nodes and
attributes are nouns and in the operations are verbs.

The automata-base graph analyser of Shukur and Mohamed [6] works in
a way that is similar to that presented above. The system does two types of
evaluation: static and dynamic. The static analysis is made by comparing the
global number of states, the number of initial and final states and the number
of connections. The dynamic analysis is made by testing two sets of strings. One
of the sets is composed by strings that the model should accept. If any of it is
rejected, the graph is not correct. The second set is composed by strings that
should be rejected by the system. So, by opposition, if any string is accepted the
graph is not correct.

Thomas, Smith and Waugh [9, 8] propose a system with similarities with
the approach presented in this paper. It is a generic system able to handle
different diagram types. Elements can be represented as boxes or circles and each
connections as lines. The system tries to match those elements from students’
answer to the elements of the solution. For each pair of nodes and edges is
computed a similarity measure and with that value the system can assume what
is (or not) a valid match. If the similarity is high, the system assumes it as
correct. On the other hand, if the similarity is low the system is marked as not
correct. The assessment algorithm described in the next section proposes a way
to find the best match without these assumptions.

3 Graph assessment algorithm

The objective of the algorithm described in this section is to assess an exercise
represented as an extended graph, by comparing it with a standard solution,
represented also as an extended graph. The assessment consists in determining
a set of differences between both extended graphs. These differences can be
summarized in a grade, a numerical value within a fixed range (e.g. 0 to 100).
If the set of differences is empty then the attempt of the student reaches the
maximum grade; otherwise each difference introduces a penalty according to its

A structural approach to assess graph-based exercises 15

SLATE’2015

type. For instance, a missing node may have a higher impact on the grade than
a missing edge. Wrong types, missing or wrong properties have also their own
penalties, depending on the graph-based language being assessed.

The basic approach is to determine the mapping between the node sets of
both extended graphs that maximizes the grade. This can be solved by a simple
generate and test strategy. If one generates all the possible mappings between
both extended graphs, for each mapping one can determine the differences be-
tween both graphs and compute a grade. After iterating through all possible
mappings one can select the one that produces the highest grade.

A solution and an attempt with equal sizes, i.e. with an equal number of
nodes, is a particular case. In general these graphs have different sizes since the
student may have omitted nodes or edges, or introduced unneeded ones. In this
case the approach is to reduce the number of nodes in one graph until both have
the same size; edges connecting the removed nodes are also removed.

This section details several parts of the proposed algorithm. Subsection 3.1
introduces the definitions of extended graph and graphs differences, and de-
fines the computation of a grade from a set of graph differences. Subsection 3.2
explains how node mappings are generated and pruned to enable an efficient
assessment.

3.1 Data structures

The proposed algorithm processes two extended graphs, a standard solution and
a student attempt. A simple graph G = (N,E) is defined by a set of nodes and a
set of edges, where an edge is a pair of nodes. In an extended graph both nodes
and edges have a type and a set of properties. An extended graph is a multigraph,
in the sense that a pair of nodes may have more than a one edge, possible with
different types.

Node and edge types capture the essential features of a graph-based lan-
guage. Take UML diagrams for instance. Each kind of diagram combines nodes
and edges of particular kinds. A use case diagram has as node types actor and
use case, and as edge types associations, dependencies and generalizations. The
features that are not captured by types are encoded as properties. Properties
are simply name value-pairs. Consider an association in an UML class diagram;
it may have a navigability, multiplicities, roles and other kinds of properties.

The assessment of an extended graph against another is a set of differences.
The most relevant differences are detected when both graphs are made of the
same size, such as insertion and deletion of nodes. The rest of the differences
are computed based on a mapping between the nodes set of extended graphs
with equal size. Consider a mapping m : N → N ′ and the nodes a ∈ N from
the extended graph used as solution. If a and m(a) are indistinguishable then
not difference is added to the set. Otherwise, a differences of a certain kind is
signaled: if the types of a and m(a) differ, m(a) has a wrong type; if a property
of a and m(a) differs, a property insertion, deletion or wrong value is signaled.

The assessment restricted to nodes plays an important role in the proposed
algorithm, since it is quicker to compute and is used in heuristics. However,

16 José Paulo Leal and Rúben Sousa

SLATE’2015

a complete assessment must also consider edges. When nodes are removed to
force both graphs to have the same size, the deletion of arcs connecting then is
also marked. The rest of the arcs depends on the mapping. For each (a, b) ∈ E
is expected an (m(a),m(b)) ∈ E′ and vice-versa. Otherwise edge insertions,
omissions, wrong type, as well as edge property differences, are also marked.

Given a set of differences it is possible to compute a grade. The empty dif-
ference set has the maximum grade (e.g. 100). Each kind of difference has a
certain penalty and a grade is computed by subtracting these penalties to the
maximum grade. Penalties depend on their kind and the size of the graph. In
general a difference in a node should have a higher impact that a difference on
a edge, but ultimately this depends on the graph-based language. There are a
number of weights that have to be tuned for a particular language, based on
actual grades given by expert teachers as benchmark. The same penalty has
different impacts according to the solution graph size. For instance, a missing
node will have higher impact on a small graph than on a large graph.

Grades computed from a set of differences are much more than just the final
output of the assessment algorithm. They are essential to control it, in particular
the node contribution to the grade, as is explained in the next subsection.

3.2 Node mappings

The general strategy of assessing an extended graph against another is to deter-
mine a mapping between then that produces the higher grade. Due to the large
number of possible mappings it is important to have heuristics to consider the
most promising first and to have a criteria to prune most of them.

The node component of the assessment outweighs the edge component, al-
though its computational complexity is much smaller. If both graphs have n
nodes, there are n2 pairs or nodes, although these can be combined in n! map-
pings. If one iterates over the set or mappings by decreasing order of their node
contributions to the grade (i.e. with increasing penalties), then the first mappings
have higher chance of being the best than those appearing afterwards.

The first step for generating these mappings is to compute the contribution
for the grade of individual node mappings. The initial mapping candidate is
constructed from the individual mappings with best grade (less differences) for
each node in the standard node set. Note that this is a mapping candidate, it
may not be a valid candidate if two different nodes are mapped in the same
node. The rest of the individual mappings is generated by decreasing order of
their contributions to grade.

It should be noted that the mappings are not created an then sorted, other-
wise all the n! mapping would have to generated. Instead, the successive map-
pings are generated by decreasing order or their contribution to the node grade
from a list of node-to-node mapping. This list has only n2 node-to-node map-
pings that are the building blocks of the mappings. This list is actually sorted in
decreasing order of their contribution to the node grade and it is used for finding
replacements to the initial mapping.

A structural approach to assess graph-based exercises 17

SLATE’2015

New mappings are generated by replacing individual node mappings with
an alternative. To ensure that the node contribution of the mapping decreases
monotonously a sequence of target differences is explored in increasing order.
The first grade difference to be explored is zero. That is, all sets of alternatives
with a cumulative difference of zero to the best node grade are tested before
all others. Then sets of alternatives with a cumulative difference of 1, 2, and so
forth until all possible sets of alternatives are explored. The fact that grades are
integer values is fundamental to this approach.

The number of mappings generated in this way is actually more than n!
(where n is the number of nodes of the graphs) since some of the mappings are
invalid and are discarded. A mapping is invalid if it is not a bijective function.
Hence, this process of generating mappings is only worthwhile if it can be pruned
early and thus avoid generating most of the mappings.

After a number of iterations, the best mapping produces a grade gbest. The
current mapping’s grade is g = gnodes +gedges. If gnodes +gmax edges < gbest then
it is sure that a better grade cannot be achieved with the remaining mappings
since they all have a node contribution smaller than gnodes.

The node mappings generation process described above assumes that both
graphs have equal sizes, which in general is not the case. If one graph has n nodes
and the other has m nodes, with n > m, then there are n!/m! different ways to
make them equal. Again, the approach is to delete first the nodes that are least
expected in the mapping, and pruning the tail of the node deletion list once it is
certain that those alternatives cannot contribute to determine a mapping better
than the one determined so far.

The individual mappings are also used for selecting the order in which nodes
are removed. For instance, if a single node has to be removed then the first
attempt goes with the node that produces the worst contribution when mapped
with any other, followed by the nodes with increasing contribution. Is a pair of
nodes has to be removed then a similar approach is taken and is considered the
combined contribution of these nodes. Since the groups of nodes to be removed
are selected in the increasing order of their contribution to the grade, a similar
pruning condition is used also in the graph reducing procedure.

4 Validation

The graph assessment algorithm described in the previous section was imple-
mented in Java 1.8. This implementation was used in a number of experiments
to validate the applicability of the proposed approach in the assessment of ex-
ercises on graph-based languages.

The validation was conducted using synthetic graphs. This approach con-
trasts with the validations described in the existing literature on diagram as-
sessment systems, surveyed in Section 2. Most of the referred authors use actual
exercises and student attempts, or a corpus with a large number of diagrams.

The reason for choosing synthetic data to validate this approach is twofold.
Firstly, it is not intended for a specific graph-based language and should be

18 José Paulo Leal and Rúben Sousa

SLATE’2015

adjustable to any graph-based languages that fits in the extended graph data
model. Hence, its is important to test it with a wide range of settings, varying
the number of types and properties, as will happen with different graph-based
languages. Secondly, it is important to test the limits of the proposed approach,
in terms of graph sizes and amount of difference between and attempt graphs,
for which a large number of graphs pairs is required.

4.1 Graph generator

The graph generator is a component that produces synthetic graphs for testing
and validating the proposed graph assessment algorithm. This component is
used to generate both a solution graph and attempts near a given solution. The
attempt graph cannot be another random graph, it must be close enough to the
solution to be able to produce a meaningful assessment.

The graph generator follows the builder design pattern. It has a number of
settings that control of the minimum and maximum number of nodes, types and
properties. The number of edges for a graph with n nodes ranges between n− 1
and n(n+ 1)/2 since these are the minimum and maximum number of edges for
a connected graph with n nodes. When a new graph is requested, its nodes and
arcs with respective types and properties are randomly generated within these
boundaries.

Graphs used in graph-based languages are typically connected graphs. Thus,
the generator ensures that generated graphs are connected. It computes the con-
nected components of the graph and, while it has more then one, it replaces a
redundant edge in one component with an edge to a node in a different compo-
nent. A redundant edge in a connected component is one that can be removed
without breaking connectivity.

As explained above, the graph generator can also be used to produce graphs
within the vicinity of a given graph, i.e. with a given number of variations, in
number of nodes, edges, types and parameters. Within these boundaries the
generator: inserts or removes nodes; changes types; inserts, removes or changes
properties. Since the graphs produced this way are modelling student attempts,
they may be disconnected graphs.

When producing a graph variant to model a student attempt, the generator
produces also a set of differences. This set of differences uses the same type of
data structure returned by the assessment method. Hence it is straightforward to
compare the differences detected by the assessment method with those produced
by the generator. This comparison validates the algorithm and its implementa-
tion.

Not all student attempts are wrong. Some may be equivalent to the standard
solution, and this situation must also be tested. Nevertheless, it would be highly
improbable for the two graphs to have nodes and arcs exactly in the same order.
Comparing two exactly equal graphs could have an influence of the performance
of the algorithm. Thus, the nodes and arcs of variant graphs are always shuffled,
even if some differences were actually introduced.

A structural approach to assess graph-based exercises 19

SLATE’2015

4.2 Experiments

The implementation of the proposed graph assessment algorithm and synthetic
graph generator described in the previous subsection were used in a series of
experiments designed to answer the following questions.

Up to what graph size can this algorithm be used? The complexity of
the graph homeomorphism problem is an NP problem neither known to be
solvable in polynomial time nor to be NP-complete [5], but most likely the
complexity is high enough to prevent the use of this approach on graphs
above a certain size.

Do heuristics have a significant impact on performance? The heuristics
were designed to explore the most promising mappings first, but they have
an initial cost and depend of the effectiveness of the pruning criteria.

What is the impact of weights in performance? The algorithm is driven
by grades and heuristics rely on the contribution of nodes to grades. The
balance between the weight of node and edge grades is bound to influence
performance.

What is the impact of domain specific data? The algorithm was designed
to take advantage of the types and properties assigned to nodes and edges.
This data makes node and edge easier to identify and the algorithm should
perform better as more of it is available.

How dissimilar can solutions and attempts be? If the attempt and the
solution are completely dissimilar then it makes no sense to compute differ-
ences between then and the grade should be zero. However, the assessment
algorithm should perform well for attempts within a certain range of the
solution.

The experiments that answered to these questions ran on a 4 cores computer
with 8 i7-3630QM CPUs at 2.40GHz, with 8 GByte of RAM. For each setting
the experiment was repeated with 100 different random pairs of graphs. On
most cases the assessment of a pair of graphs was executed well bellow 1/2 a
second. Occasionally some pairs of graphs take a longer time hence a timeout
of 2 seconds. In these case the assessment was considered incomplete, although
the result obtained within the allotted time is correct in more than 50% of the
cases.

The first experiment addressed the size of the graphs that can be assessed
with the proposed algorithm. Alur et al. argue that graphs in used exercises
are usually smaller, with less than 10 nodes [2] and thus this complexity is
not a serious problem. This appears to be the case in DFA, the domain they
studied, and also many other domains, such as UML class and use case diagrams.
However, an Entity-Relationship exercise to model a simple database may have
have more than 20 nodes, for instance. The results obtained with hundreds of
equivalent graphs pairs show that the proposed algorithms deals with orders of
up to 30.

Another experiment addressed the impact of pruning. For that purpose a
variant of the mapping iterator was implemented. This iterator returns all the

20 José Paulo Leal and Rúben Sousa

SLATE’2015

possibles mappings, without the initial overhead required by the iterator of the
proposed algorithm. The rest of the algorithm was maintained unchanged. This
algorithm was tested with equivalent graphs but could only complete the as-
sessment of graphs of grade 6 or lower. Pairs of graphs with a larger number of
nodes produce always an incomplete assessment. This compares with the use of
the optimized iterator that can assess most graph pairs up to order 30.

The third experiment addressed the impact of weights, in particular the bal-
ance between the node and edge contribution to assessment. Since the heuristics
rely on the node contributions to perform pruning, a larger contribution of edges
decreases efficiency. It should be noted that the actual weights will depend of the
specific graph-based language and on particular grading criteria defined by the
teacher. In any event, it is expected that nodes contribute at least with half of
the grade and in general with more than that. In fact, an equal weight of nodes
and edges produces an assessment in less than 200ms for graph pairs with up to
28 nodes, and the results improve as the weight of nodes is higher, as expected.
The percentage of incomplete assessments is always less than 5% and lowers as
the weight of edges lowers.

The impact of domain specif data, i.e. the information provided by types and
properties was also tested. Although the proposed algorithm is based on struc-
ture of the graphs, their nodes and edges, the heuristics use types and properties
to distinguish them and improve efficiency. However, it should be noted that the
number of types and properties depends on the graph-based language and can-
not be controlled by the algorithm. As expected, the worst results were obtained
with just one or two different types (a single type is equivalent to no types).
With three to five types graph pairs of up to an order of 30 are assessed in 50
ms. The incomplete assessments reached 8% for graphs with order 28 with 3
types, but was less than 2% for all orders up to 30 with 4 or 5 types.

The experiments described above were performed with pairs of equivalent
graphs to determine the impact of features. In these experiments it was checked
that the algorithm found no differences between the graphs. The rest of the
experiments were performed with different graphs and it was validated that the
algorithm recovers the differences introduced by the generator. The algorithm
was tested with solutions graphs with sizes up to 30 and attempt graphs with a
size variation of up to 8 nodes. The execution time in these assessments is bellow
40 ms, with a tendency to increase with larger size differences. The number of
incomplete assessments is bellow 5% for solution graphs with up to 25 nodes and
a different in number of nodes of less than 7.

5 Conclusions and future work

The main contribution of this paper is an algorithm for assessing graphs driven
by their structure. It computes both a grade an explanation, a data object that
can be serialized into a natural language text, or used as input for other systems.
The assessment algorithm determines the best mapping between nodes in a

A structural approach to assess graph-based exercises 21

SLATE’2015

solution graph and nodes in attempt graph. The mapping is the best in the
sense that it maximizes the student’s grade.

The algorithm validation ensured its efficiency for connected graphs with up
to 30 nodes, which should cover the needs of exercise assessment. It suggests that
automatic assessment systems for diagrams can be easily implemented based on
this algorithm.

The next step is to validate assessment systems, rather than just the assess-
ment algorithm, by using them with actual graph-based languages and actual
students. An experiment is already scheduled for the last month of the current
school year with students of a software architecture course. A parser of XML
documents produced by the DIA diagram editor1 is already in development.

The motivation for this assessment methodology is to blend it with other
assessment methodologies, notably the test based assessment used with pro-
gramming languages. This will require the study of the existing document type
definitions for abstract semantic graphs of programming languages used in in-
troductory programing courses such as Java, C/C++, Python and C#, and the
existing tools for extracting abstract semantic graphs.

Acknowledgments. Project NORTE-07-0124-FEDER-000059” is financed by the North Portugal Regional Op-
erational Programme (ON.2 O Novo Norte), under the National Strategic Reference Framework (NSRF), through
the European Regional Development Fund (ERDF), and by national funds, through the Portuguese funding agency,
Fundação para a Ciência e a Tecnologia (FCT)

References

1. Ali, N.H., Shukur, Z., Idris, S.: A design of an assessment system for uml class
diagram. In: Computational Science and its Applications, 2007. ICCSA 2007. In-
ternational Conference on. pp. 539–546. IEEE (2007)

2. Alur, R., D’Antoni, L., Gulwani, S., Kini, D., Viswanathan, M.: Automated grad-
ing of dfa constructions. In: Proceedings of the Twenty-Third international joint
conference on Artificial Intelligence. pp. 1976–1982. AAAI Press (2013)

3. Batmaz, F., Hinde, C.J.: A diagram drawing tool for semi–automatic assessment
of conceptual database diagrams (2006)

4. Douce, C., Livingstone, D., Orwell, J.: Automatic test-based assessment of pro-
gramming: A review. Journal on Educational Resources in Computing (JERIC)
5(3), 4 (2005)

5. Hell, P., Nesetril, J.: Graphs and homomorphisms. Oxford University Press (2004)
6. Shukur, Z., Mohamed, N.F.: The design of adat: A tool for assessing automata-

based assignments. Journal of Computer Science 4(5), 415 (2008)
7. Soler, J., Boada, I., Prados, F., Poch, J., Fabregat, R.: A web-based e-learning

tool for uml class diagrams. In: Education Engineering (EDUCON), 2010 IEEE.
pp. 973–979. IEEE (2010)

8. Thomas, P., Smith, N., Waugh, K.: Automatically assessing diagrams. In: Proceed-
ings IADIS International Conference e-Learning. vol. 2009 (2009)

9. Thomas, P., Waugh, K., Smith, N.: Automatically assessing free-form diagrams in
e-assessment systems. In: 1st HEA Aiming for Excellence in STEM Learning and
Teaching Annual Conference, Imperial College London (2012)

10. Vachharajani, V., Pareek, J.: A proposed architecture for automated assessment of
use case diagrams. International Journal of Computer Applications 108(4), 35–40
(December 2014), full text available

1 http://dia-installer.de/

22 José Paulo Leal and Rúben Sousa

SLATE’2015

Automatic generation of CVs
from Online Social Networks

Sergio Maia Dias1,2, Alda Lopes Gancarski4,5, and Pedro Rangel Henriques1,3

1 University of Minho, Department of Computer Science, CCTC,
Campus de Gualtar, Braga, Portugal

2 pg25338@alunos.uminho.pt
3 prh@di.uminho.pt

4 Institut Telecom, Telecom SudParis, CNRS SAMOVAR
9 rue Charles Fourier, 91011 Évry, France
5 Alda.Gancarski@telecom-sudparis.eu

Abstract. Since the explosion of Social Media use, users information
being dessiminated and dynamically updated, Curriculum Vitae (CV)
documents started to be automatically generated, compiling that infor-
mation and returning it to the user usually in PDF file format. However,
existing CV generation tools do not use a standard CV structure for-
mat, which should be generic enough for common user needs, but also
with domain specific components for certain work environnements, like
academic and research. Another difficulty on using most of existing tools
is that they return CV in a printable file format, not easily editable. In
this paper, we introduce CVGenie, a system to automatically generate
CV from information available in Online Social Networks. The system
uses the EuroPass CV standard, extended with domain specific compo-
nents. The CV file format is the XML dialect of EuroPass, because not
only it is editable, but also it allows for the interoperability with other
applications.

1 Introduction

In a professional environment, individuals need a way to expose their employ-
ment history, qualifications and education, to prove their worth in a competitive
marketplace. In an academic environment, individuals also have this require-
ment, although it is tailored to the nature of the individuals’ work, i.e., more
focused in their research and teaching.

Previously, this requirement was satisfied by a curriculum vitae (CV), which
is a document that contains an overview of the aforementioned aspects of an
individual’s career. With the emergence of the web, those aspects started to be
exposed in personal or institutional web pages.

As such, with the popularity of social media, professional-oriented Online
Social Networks (OSN) started to emerge, and became essential for personal
promotion in the labor market. In these social networks, users share their pro-
fessional experience and the projects (thematics and collaborators) they were or

IV Symposium on Languages Applications and Technologies Pages 23–28
18th and 19th June, Madrid, Spain 978-84-606-8762-7

are involved with. An example of these OSN is LinkedIn [10], where users enu-
merate the companies or institutions that they have worked in the past, they list
the projects that they have been involved in and they describe their education
and create an explicit network of past or present collaborators. Other examples,
in a more academic focused social networks, are Academia [1] and ResearchGate
[12], where the users’ publications and projects are displayed.

Nonetheless, this method of self-marketing is insufficient for some processes;
to apply for a position at a company it is usually required for the candidate to
present his professional experience in a succinct manner, ordinarily in a docu-
ment for that effect, i.e., a CV. It is thus clear that there is a need to utilize
the information available in these new forms of professional exposure for the
automatic generation of CV.

This paper describes an ongoing work which entails the creation of CVGenie,
a tool that, using the information available online on specific social networking
platforms, like LinkedIn [10] or Academia [1], generates CVs for the end user,
who can then use them at need.

This paper is organised as follows: Section 2 introduces existing CV formats.
Existing systems that perform CV generation are analysed in Section 3. Section
4 describes the proposed system, showing its main features and architecture. We
finish the paper with a conclusion and the planned future work.

2 Curriculum Vitae Standard Formats

Nowadays, several CV formats exist, defined by different institutions or coun-
tries. Despites there is not a standard globally accepted, the EuroPass format
[8] comes close: it is an initiative by the Directorate-General for Education and
Culture of the European Union to standardize CV documents, and is widely
accepted in several countries of the European Union, like Portugal and Spain.
Other CV formats are more focused on specific areas of expertise, such as the
academic format of The Career Center of the University of Washington (UW’s
Academic CV) [2], or the College Art Association’s Visual Artist Format (CAA’s
Artist CV) [3]. Since these formats are tailor made for specific individuals or a
specific situation, they are not universally accepted. Moreover, they are also not
very strict, since they do not define a clear set of rules that a CV must comply
with, delegating that responsibility to the individual writing the document.

CV formats vary according to the individuals’ context (geographical location,
area of expertise) and the needed detail level. However, a core set of information
is common among most formats, as shown in Table 1.

UW’s Academic CV and CAA’s Artist CV are examples of formats dedicated
to a specific work domain. In its turn, EuroPass is a popular generic-purpose
format used by individuals in a wide range of areas of expertise, this is why it is
our system’s CV format. Domain specific content and the desired level of detail
will be integrated in EuroPass through adequate extensions.

24 Sérgio Maia Dias, Alda Lopes Gançarski and Pedro Rangel Henriques

SLATE’2015

EuroPass UW’s Academic CV CAA’s Artist CV

Name Yes Yes Yes
Gender Yes, optional No No

Date of Birth Yes, optional No Yes, optional
Addresses Yes, optional Yes Yes, optional
Contacts Yes Yes Yes

Education Yes Yes Yes
Work Experience Yes Yes Yes

Skill Set Yes Yes Yes
Affiliations Yes, optional Yes, optional Yes, optional
Seminars Yes, optional Yes, optional Yes, optional

Publications Yes, optional Yes Yes
References Yes, optional Yes, optional Yes, optional

Table 1. Common information for existing formats

3 Existing Solutions for CV Generation from Online
Social Networks

Several applications (software packages) exist for CV generation from OSN, like
Yevgeniy Brikman’s Resume Builder [11], DoYouBuzz.com [6], VisualCV [13],
Create-CV.com [4] and EGrabber’s ResumeGrabber Suite [7].

These applications are capable of extracting information from OSN, being
LinkedIn the most common source of data. Some, like Create-CV.com, even
support other social networking and messaging services, like Facebook, Twitter,
Skype, etc, although most of them are either poor sources of professional infor-
mation or require extensive mechanisms for extracting data, which makes them
not feasible.

The main objective of some of these applications is to collect the information
and make it available online with a structure commonly associated with CV, with
the option of further editing it with the integrated tools, and possibly export it
as a file ready for printing. This is the case of Resume Builder, DoYouBuzz.com
and VisualCV. Create-CV.com simply allows to export the end result as a file,
and doesn’t allow displaying it online. These solutions focus on being complete
and self-sufficient, once the information as been retrieved from the data sources.
In doing so they become less useful, because they do not interoperate with other
systems, not being able to integrate different complementar functionalities. In
addition, generated files by those solutions cannot be reused by other systems
easily. For example, none of these tools generates files in a file format that is
easily editable externally, or that follows a standard like Europass (which uses
an XML based format) and therefore can be integrated with other systems.

EGrabber’s ResumeGrabber Suite is a substantially different solution, since it
is not focused on the individual described in the CV as the end user, but is a tool
to be used in the context of an organization for integration of CV information
of the organization’s collaborators or job applicants.

Automatic generation of CVs from Online Social Networks 25

SLATE’2015

Resume Builder DoYouBuzz VisualCV Create CV

Import info
from online
media

Yes, from
LinkedIn

Yes, from
LinkedIn and
Viadeo

Yes, from
LinkedIn

Yes, from
LinkedIn, Face-
book, Twitter,
Skype, etc (al-
though it only
retrieves basic
information)

Import info
from files

No No Yes, from PDF
and Word

No

Export CV in
read-only file
format

Yes, in PDF Yes, in PDF, al-
though it only
exports the ba-
sic information

Yes, in PDF Yes, in PDF

Export CV in
editable file for-
mat

No Yes, in Word, al-
though it only
exports basic in-
formation

No No

Has an inte-
grated editor

Yes Yes, with many
features

Yes, with many
features

No

Can share CV
online

Yes, through a
link

Yes, through a
link, social net-
works or pub-
licly on search
engines

Yes, through a
link, social net-
works or pub-
licly on search
engines

Yes, through a
link

Includes info for
specific areas of
expertise

No No No No

Table 2. Comparison of features of the identified CV generation systems

Table 2 depicts the features of each tool, establishing a comparison and iden-
tifying the main issues that were detected. From Table 2, we see that the main
objective of these systems is to collect the individual’s data, allow for it to be eas-
ily edited inside the system and easily share it online, or export it as a read-only
format. The biggest flaws in these systems are:

– In general, they do not allow exporting the CV in an editable format.

– In general, they only import information from the most popular source of
professional data, i.e., LinkedIn.

– They just include in the CV the core set of information identified in Table
1; more specific one, like detailed academic information, is not considered.

These aspects are considered in the proposed CVGenie system.

26 Sérgio Maia Dias, Alda Lopes Gançarski and Pedro Rangel Henriques

SLATE’2015

4 CVGenie System: Requirements and Architecture

The system projected will be designed towards users that want to generate their
own CVs, from the information about themselves available online. The features
that shall be provided by that system are the following:

– Import information from OSN: The information required for the CV will
be obtained from the selected online social networks (LinkedIn, Academia,
ResearchGate and Behance). The latter will be used mainly for information
for the academic and artistic sections of the CV.

– Import information from files: the system will be able to import infor-
mation from files in the standard EuroPass XML format as well as LATEXfiles
that use the EuropeCV [5] package.

– Export CV in an editable format: the system will be able to export CV
documents in the EuroPass XML format, making it possible to later import
these documents in EuroPass compatible systems.

– Export CV in a read-only format: the system will be able to export CV
documents as PDF files or simple HTML websites.

– Include information for specific areas of expertise: extensions to Eu-
roPass will be proposed to support specific formats like UW’s Academic CV
and CAA’s Artist CV.

The proposed CVGenie architecture, presented in Fig. 1, is similar to the
OAIS model [9]; it will provide the same standard features, like information
ingestion, data management and storage, and knowledge dissemination.

The sources of data for the our CVGenie tool will be offline media, which
includes both EuroPass XML documents and LATEX documents using the Eu-
ropeCV package, and online media from user profiles in various online social
networks such as LinkedIn, Behance, Academia and Research Gate.

This information will be ingested by the system: it will be interpreted and
stored.

Afterwards, the user can then export the information in an editable format,
which will be the EuroPass XML format, or in a read-only format, which will
include both PDF documents and simple HTML websites.

5 Conclusion and future work

The system we propose in this paper is dedicated to automatic CV generation
using user’s information from OSN. Our system is intended to extract infor-
mation from the most popular OSN, while returning the CV information in a
generic standard format that can support domain specific extensions if needed.
The standard CV structure adopted is EuroPass, in its XML format, but other
file formats can be produced, like PDF or HTML.

As future work, we intend to perform the following tasks:

– Formally define extensions to the EuroPass format dedicated to specific do-
mains.

Automatic generation of CVs from Online Social Networks 27

SLATE’2015

Fig. 1. The proposed system architecture

– Make large and rigorous system validation and evaluation with users from
different interest domains having accounts on different OSN.

References

1. Academia.edu - Share research, 2014. http://www.academia.edu.
2. Academic Careers Curriculum Vitae - The Career Center of the University of

Washington , 2014. http://careers.washington.edu/ifiles/all/files/docs/

gradstudents/pdfs/AcademicCareers-Curriculum_Vitae_07-08.pdf.
3. Standards and Guidelines — College Art Association — CAA , 2014. http://www.

collegeart.org/guidelines/visartcv.
4. Create my CV online for free, 2015. http://Create-CV.com.
5. CTAN: Package europecv, 2015. http://www.ctan.org/pkg/europecv.
6. DoYouBuzz: Your best resume, 2015. http://DoYouBuzz.com.
7. Software to Import Resumes, 2015. http://www.egrabber.com/

resumegrabbersuite.
8. Europass: Curriculum Vitae, 2014. europass.cedefop.europa.eu/en/documents/

curriculum-vitae.
9. ISO 14721:2012 - Space data and information transfer systems – Open archival

information system (OAIS) – Reference model, 2015. http://www.iso.org/iso/

home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=57284.
10. LinkedIn: World’s Largest Professional Network, 2014. http://www.linkedin.com.
11. Turn your LinkedIn Profile into a Resume — Resume Builder, 2015. http://

resume.linkedinlabs.com.
12. ResearchGate, 2014. http://www.researchgate.net.
13. VisualCV - Online CV Builder and Professional Resume CV Maker, 2015. http:

//VisualCV.com.

28 Sérgio Maia Dias, Alda Lopes Gançarski and Pedro Rangel Henriques

SLATE’2015

Knowledge Extraction from Requirements Specification

Eduardo Barra1,* Jorge Morato1

1Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Madrid, Spain.
ebarra@kr.inf.uc3m
jmorato@inf.uc3m

Abstract. One of the main artifacts in Requirements Engineering is the Re-
quirements Specification (RS). Throughout the life cycle of the RS arises the
need of extracting knowledge in order to facilitate communication with stake-
holders. However, this process is not usually efficient. In the different proposals
for the representation of a RS often arise conflicts, coupling and redundancy of
requirements. The Aspect-Oriented paradigm provides principles to address a
multidimensional modelling to avoid overlapping between requirements.
Knowledge-Engineering is proposed to provide an organized modelling of the
knowledge according to the representation of ontologies that allows an efficient
extraction of knowledge from the requirements. An experimental study has
been developed to assess its efficiency when compared with classical methods.

Keywords: Requirements Engineering· Requirements Specification· Aspect-
Oriented· Knowledge-Engineering·Ontology· Knowledge Extraction.

1 Introduction

The most important artifact to be used to transmit knowledge between the different
activities of any process of Requirements Engineering (RE) is the Technical Specifi-
cation Document (TSD) in natural language, which is often supplemented with graph-
ical models for its better understanding. The Requirements Specification (RS) is the
section of a TSD that contains the knowledge specification of a software product.

The internal organization of a RS is aimed to reduce the complexity of its seman-
tics and improve the global understanding of the requirements for the effective trans-
mission of knowledge. However, there is wide agreement on organizing requirements
in a simplistic way, just into two types: functional and non-functional. In this conven-
tion the group of functional requirements is accepted by most analysts, however, the
organizing of non-functional requirements is ambiguous and subjective. Different
researchers claim that, in fact, they impose restrictions on the functional requirements
[1]. Therefore, they should be viewed as properties of future software product [2] or
as requirements that indicate quality [3]. We think that the paradigm Aspect-Oriented
(AO) [4] provides the resources to develop models that allow a multidimensional
organization without compromising the integrity of its semantics. Therefore, the rep-
resentation of a RS with this paradigm reduces the conflicts, couplings and redundan-
cy between requirements. This reduction in the complexity of a software product fa-
cilitates the extraction of knowledge, its reuse and management.

IV Symposium on Languages Applications and Technologies Pages 29–34
18th and 19th June, Madrid, Spain 978-84-606-8762-7

The discipline Ontology Engineering (OE) is often applied to Knowledge Engi-
neering (KE). The best example is the Semantic Web technology, where the ontolo-
gies allow creating an explicit and formal specification of knowledge managed
through computers that provides reusability and shareability [5, 6]. Therefore, our
hypothesis is that the representation of a RS through ontologies is an important factor
to obtain an efficient representation of knowledge. With this background, this re-
search proposes guidelines according to the AO paradigm based on principles of KE
applied to Requirements Engineering (RE) for the development of a RS. OE provides
a multidimensional semantic model with a well-founded organization that facilitates
the extraction of knowledge.

In accordance with these ideas, the rest of the paper is structured as follows. Sec. 2
briefly discusses related work for the modeling of a RS based on the paradigm AO
and OE. In sec. 3, some guidelines for the modeling of a RS are proposed and exem-
plified. In sec. 4, an evaluation is developed to demonstrate that the representation
with the guidelines is effective and efficient in the extracting of knowledge from RS.
Finally, sec. 5 presents the conclusions and future work.

2 Related Work

In recent years, many studies have shown the potential of the AO paradigm focused
on the early stages of software development. These proposals are grouped under the
term Aspect-Oriented Requirement Engineering (AORE) [7] [8]. The first step in this
research has been to study the most representative approaches in AORE, in order to
find out well-founded approaches to include in our work.

In 2003, Rashid et al. proposed using XML language to index the description of the
requirements for the management of concerns [9]. In another proposal, "Multi-
Dimensional Separation of Concerns in Requirements Engineering" [10], the suggest-
ed solution for RE is the separation of concerns into multidimensional categories, in
order to provide a categorization modeled from different points of view. In Yu and
Prado’s work is [11] proposed aspect-orientation techniques to manage objectives. It
suggests mechanisms to avoid conflicts between requirements. Another proposal, that
combines aspect-oriented analysis and design [12], highlights the need to decompose
the requirements in others more elementary. Finally, the research carried out by Ja-
cobson and Ng shows that when the concepts of the AO paradigm are related to "use
cases" the positive influence for identifying concerns can be observed [13].

In these proposals, different contributions to consider were found, but also differ-
ent problems. These approaches only consider the modelling of requirements in de-
scriptions of natural language, where a requirement may belong to different aspects.

The modelling of requirements in these proposals lacks a clear technique for the
modelling of knowledge, generating conflict, coupling and semantic redundancy.
AORE proposals are aimed at the identification, separation and composition of con-
cerns but they are not oriented to the representation of knowledge in an efficient way.

Additionally, different ontology-driven approaches, OE, to support RE have been
analyzed [14, 15]. Although modeling the knowledge of the domain through ontolo-
gies addresses an obvious need, there is a lack of well-established natural language

30 Eduardo Barra and Jorge Morato

SLATE’2015

techniques to represent these internal semantic relationships among requirements.
Besides, the need of developing organizational structures to represent the Require-
ments Specification (RS) is usually overlooked.

3 Guidelines for the Semantic Modeling of a RS

The first stage of the guidelines proposed in this work focused on the importance of a
sound and adequately substantiated organization in the development of a RS. In this
case, we propose the creation of a structure to specify the requirement. This structure
is designed in accordance with different viewpoints. The main goal is to provide a
way for the development of a RS that improves the understanding of the requirements
as a whole. In this regard, we have proposed the use of an Architecture Viewpoint
(AVP) that provides a schema for developing the RS. The AVP is modeled on a do-
main ontology that provides a guide for modelling responsibilities. The goal is to
identify the viewpoints that will group both the dominant concerns and the related
viewpoints in crosscutting concerns. The high-level viewpoints proposed in the AVP
will act as containers of viewpoints of lower level in a recursive nesting to reach the
last level viewpoint.

In the second stage, the early concerns of a software product are modeled accord-
ing to the AVP base, in an organized knowledge representation. These guidelines
intend to help model the early knowledge using ontologies, and leaving as secondary
activity to elaborate a description in natural language to facilitate the understanding
by non-expert stakeholders. The modelling of concerns through the Ontology Engi-
neering has its major support in the Ontology Web Language (OWL). This is a rec-
ommendation introduced in 2004 by the W3C for building the Semantic Web, which
is the most popular language for the semantic description of ontologies. Accordingly,
OWL has been the language selected in these guidelines for the modelling of a RS.
The application of the guidelines involves modeling of knowledge of the Require-
ments, typical of a RS with the specification of the properties between concerns.
There are two main types of properties that OWL represents as relationships: "Object
Properties" and "Data Properties". The most important relationships in these guide-
lines are the "Object Properties" to model the semantic relationships. The modelling
of early knowledge of a software product assisted by these guidelines involves the use
of natural language in order to allow the developer a richer description of the con-
cerns, in the same way that it is done with typical requirements. This information is
added to the "Annotation Properties".

An efficient representation of a specification requires split its components in ele-
ments like concerns, information entities, roles, conditions, and so on. Usually speci-
fications are expressed in natural language (NL). Unfortunately NL is complex and
prone to ambiguities. An example may explain some of these difficulties of modeling
processes in a RS. In Figure 1 the decomposition of concern expressed in a natural
language is shown.

Knowledge Extraction from Requirements Specification 31

SLATE’2015

Fig. 1. Constraints related to the concern “Incidence Data Register”

4 Evaluation

In order to show the efficiency of the guidelines for the RS creation, we developed an
experiment to compare our guidelines with a classical development. The case study
proposed was to develop an application to manage a “stadium for athletics events”.
At the step 1 of the experiment, a solution was developed with the method described
(hereafter referred to as specification B). Besides, we gave to 32 teams a description
of a case study. The project was given to students in Software Engineering in the final
year of the degree in computer science. Each team was comprised of 5 members,
allowing them to base their solution on IEEE 830 or ESA PSS-05 standards. The
teams had to specify the TSD of a software product under a classical development
process. The specifications developed under a classical methodology were analyzed
by five researcher teachers, all of them experts in RE. The experts selected the two
best ones, which we call specifications A and C for short. The second step of the ex-
periment involved to extract shared crosscutting-concerns, dominant-concerns and
common information entities from the different solutions. Next, the concerns were
identified for the experiment referee on every of the three solutions developed. At
third step, we asked to six software analysis experts from different software factories
to manage the three specifications when facing a major update in the software. There-
fore they were required to obtain the same knowledge from the three specifications. In
order to avoid a biased result due to the learning of the domain, the specifications
were given to the expert in a specific order. In so doing, the first specification given is
not at a disadvantage in terms of effectiveness of change when comparing with the
other specifications. The first specification given was developed with the classical
methodology, named as A. When the update was finished, the specification B, made
with the guidelines, was given to the experts, and finally the specification C. In the
part of the experiment about the extraction of knowledge of the specifications devel-
oped under the classical development A and C, every expert analyst received the
Technical Specification Document (TSD) with its corresponding digital archive of the
RS to be used in a management of requirements. In the part of the experiment about
the extraction of knowledge of the specifications developed under our guidelines, the
six expert analysts received an OWL archive. Tools for ontologies, such as editors,
reasoners and a search engine were provided to the experts to carry out the update.
The time to work in every specification was limited to 30 minutes. At the step 4, re-

32 Eduardo Barra and Jorge Morato

SLATE’2015

sults have been compared and analyzed. The evaluation was made quantifying the
concerns to update correctly identified by the experts analysts from the total
knowledge proposed in each specification. The result is shown in Figure 2. We can
clearly see that the specification of a software product on the early stages developed
with the guidelines allows the knowledge extraction more efficiently.

Fig. 2. Percentage of correct concerns identified according its type

5 Conclusions and Future Works

The first proposal of the presented approach is to use the AO paradigm concepts to
get a multidimensional modeling. This step allows us to avoid conflicts, such as cou-
plings and redundancy in representing RS. These conflicts appear in a recurrent way
in modelling RS under classical methodologies. An additional goal is to prevent prob-
lems due to ambiguities when representing in natural language RS. In this sense, the
KE concepts allow to solve the problem about the knowledge representation in the
early stages of a software product. One of the contributions of our approach is the
proposal of guidelines that improve the RE process creating a RS model that facili-
tates the knowledge extraction. The guidelines are based on the improvement of the
semantic representation of the requirements with a multidimensional knowledge or-
ganization. Several approaches exist for RS modelling on AO and KE. They typically
lack knowledge organization and structure. Therefore, they are neither efficient nor
effective in defining the knowledge that different stakeholders require. We developed
an experiment with the proposed guidelines to study the effectiveness of the approach.
The result of this evaluation proved that the innovative solution proposed by this work
improves substantially the knowledge extraction in the early stages avoiding investing
many resources trying it.

As a future work we are developing guidelines for the creation of the AVP in a sys-
tematic way, which allows us to structure and organize those aspects that support the

Knowledge Extraction from Requirements Specification 33

SLATE’2015

evolution of a software product. In this regard, the automation of the guidelines will
provide the support for the creation of the AVP needed by the software factories,
where the resultant AVP could be reused in the same line product. To complement
this work, we intend to create a tool to manage concerns. This tool must provide the
resources that a typical tool offers to manage requirements, but respecting the con-
cepts of the conceptual AO model in a clear way. That is, throughout a virtual guide it
will be given support to describe the requirements but modelling the attributes with
the necessary concerns that describe their knowledge.

References

1. Sommerville, I.: Software Engineering. Pearson Education, Boston (2005)
2. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process. Addi-

son-Wesley, Reading (MA) (1999)
3. Doerr, J., Kerkow, D., Koenig, T., Olsson, T., Suzuki, T.: Non-functional requirements in

industry. In: 13th IEEE Int. Conf. Requirem. Engin. Proc., pp. 373–382, IEEE, NY (2005)
4. Kiczales, G. Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.-V., Irwin, J.: Aspect-

Oriented Programming. In: ECOOP ´97, vol. 1241, pp. 220–242. Springer, Berlin (1997)
5. Berners-Lee, T., Hendller, J., Lassila, O.: The Semantic Web. Scientific American, 284

(5), 29-37 (2001)
6. Brewster, C., O’Hara, K.: Knowledge representation with ontologies: the present and fu-

ture. IEEE Intelligent Systems, 19 (1), 72–81 (2004)
7. Grundy, J.: Aspect-Oriented Requirements Engineering for Component-Based Software

Systems. In: Requirements Engineering, IEEE Internat. Conf., p. 84. IEEE, NY (1999)
8. Rashid, A., Sawyer, P., Moreira, A. M. D., Araújo, J.: Early Aspects: A Model for Aspect-

Oriented Requirements Engineering. In: Proceedings International Conference on Re-
quirements Engineering, pp. 199–202. IEEE, NY (2002)

9. Rashid, A., Moreira, A., Araújo, J.: Modularisation and composition of aspectual require-
ments. In: Proc. 2nd Int. Conf. Aspect-oriented soft. Dev., pp. 11–20 ACM, Boston (2003)

10. Moreira, A., Rashid, A., Araujo, J.: Multi-Dimensional Separation of Concerns in Re-
quirements Engineering. In:13th IEEE Conf. Requir. Eng., pp. 285–296. IEEE, NY (2005)

11. Yu, Y., do Prado Leite, J. C. S., Mylopoulos, J.: From Goals to Aspects: Discovering As-
pects from Requirements Goal Models. In: Requirements Engineering Conf., 12th IEEE
International, pp. 38–47. IEEE, NY (2004)

12. Baniassad, E., Clarke, S.: Theme: an approach for aspect-oriented analysis and design. In:
Proc. ICSE’04, pp. 158–167. IEEE, Washington (2004)

13. Jacobson, I., Ng, P.-W.: Aspect-Oriented Software Development with Use Cases. Addi-
son-Wesley, NJ (2005)

14. Kaiya, H., Saeki, M.: Using Domain Ontology as Domain Knowledge for Requirements
Elicitation. In: 14th IEEE Int. Requir. Eng., pp. 189–198. IEEE, Los Alamitos (CA) (2006)

15. Jureta, I. J., Mylopoulos, J., Faulkner, S.: Revisiting the core ontology and problem in re-
quirements engineering. In: RE ’08, pp. 71–80. IEEE, Los Alamitos (CA) (2008)

34 Eduardo Barra and Jorge Morato

SLATE’2015

Domain Specific Languages for Data Mining:
A Case Study for Educational Data Mining

Alfonso de la Vega, Diego Garćıa-Saiz, Marta Zorrilla, and Pablo Sánchez

Dpto. Ingenieŕıa Informática y Electrónica
Universidad de Cantabria, Santander (Spain)
alfonso.de-la-vega@alumnos.unican.es,

{diego.garcia,p.sanchez,marta.zorrilla}@unican.es

Abstract. Nowadays, most companies and organizations rely on com-
puter systems to run their work processes. Therefore, the analysis of
how these systems are used can be an important source of information
to improve these work processes. In the era of Big Data, this is perfectly
feasible with current state-of-art data analysis tools. Nevertheless, these
data analysis tools cannot be used by general users, as they require a
deep and sound knowledge of the algorithms and techniques they im-
plement. In other areas of computer science, domain-specific languages
have been created to abstract users from low level details of complex
technologies. Therefore, we believe the same solution could be applied
for data analysis tools. This article explores this hypothesis by creating
a Domain-Specific Language (DSL) for the educational domain.

1 Introduction

Nowadays, most work processes in companies and organizations are supported
by a software system. Thus, the way in which people interact with these systems
reflects somehow how these processes are actually executed. Therefore, a careful
analysis of this interaction can help to find out flaws of these processes that
might be removed [4].

For instance, let us suppose a company which wants to reduce the number
of products that are returned after having been shipped. In this scenario, the
company managers might be interested in getting answers for questions such as:
“What features share those products that are returned by customers?”; or “What
is the profile of the unsatisfied customers?”. Decision makers need to know these
answers before adopting corrective actions.

Currently, it is feasible to perform this data analysis by using Big Data [3]
technologies. For instance, the profiles of the unsatisfied customers can be com-
puted using clustering techniques [8]. Nevertheless, these techniques require a
sound knowledge of the algorithms and mathematical foundations they use. How-
ever, average decisions makers do not have this knowledge.

For example, to execute a clustering, the user might need to know how a
clustering algorithm like k-means [1] works, how its parameters must be config-
ured, or what are the advantages of k-means as compared to other clustering

IV Symposium on Languages Applications and Technologies Pages 35–44
18th and 19th June, Madrid, Spain 978-84-606-8762-7

algorithms. Since decision makers lack of this knowledge, they need to rely on
third-parties to carry out these data analysis processes, which increases costs
and decreases productivity.

In other areas of software development, Domain Specific Languages (DSLs)
[9, 14] have been created in order to allow users without expertise in a certain
technology to use it. This is achieved by abstracting low level details of the
underlying technology and by using a syntax and a terminology familiar to the
end-user.

Therefore, we propose to build DSLs for data analysis. These DSLs would
allow decision makers to formulate queries about the performance of a business
process using a syntax and terminology familiar to them. Then, these queries
would be automatically transformed into invocations of specific algorithms for
data analysis. The DSL syntax should hide all the details associated with data
analysis techniques to the end-user, who might remain unaware of how these
techniques are used.

This article explores the feasibility of this idea by showing how a DSL with
these characteristics can be developed for the e-learning domain. The objective
of this DSL is to analyze the performance of a course hosted on an e-learning
platform, such as Moodle, by using data, like the students’ activity, gathered via
this kind of platform. The final users of the DSL will be teachers and instructors,
so it must use a syntax and a terminology familiar to them. Similar DSLs might
be created for other domains following the process described in this article.

For the development of the DSL, we will make use of modern model-driven
engineering techniques. More specifically, we will follow the development process
proposed by Kleppe [9].

After this introduction, this article is structured as follows: Section 2 de-
scribes the domain our DSL targets. Section 3 comments on related work. Sec-
tions 4 and 5 explains how a DSL for the educational domain has been developed.
Finally, Section 6 discusses on the benefits of this work and concludes this article.

2 Educational Data Mining

The first step to develop a DSL is to know for what purpose the DSL will be
used. In our case, we are interested in knowing what kind of questions decision
makers would like to ask. In this article, we will focus on Educational Data
Mining domain. Therefore, we describe it briefly.

Data Mining is the process of discovering interesting patterns and knowledge
from large amounts of data [8]. In the last few years, it has been applied to the
educational domain, what is known as Educational Data Mining (EDM) [13].
Educational Data Mining aims to take advantage of the data gathered by e-
learning platforms, such as BlackBoard or Moodle, which store data related to the
activity carried out by the students of their courses. Educational Data Mining
is defined as “an emerging discipline, concerned with developing methods for
exploring the unique types of data that come from educational settings, and using
those methods to better understand students, and the settings which they learn

36 Alfonso de la Vega, Diego García-Saiz, Marta Zorrilla and Pablo Sanchez

SLATE’2015

in.” [13]. The discovered information could be useful for teachers and instructors
in order to improve the performance of their teaching-learning processes.

For instance, at the beginning of a course, a teacher might be interested
in what kind of students profiles exist. Based on the obtained information, the
teacher might adapt the course before it starts to tune it for these students.
Thus, at the beginning of the course, the teacher could ask: “What are the
profiles of my students?”. This information can be computed by using clustering
techniques [8] on the students’ data.

When the course finishes, teachers are usually worried about the students
that have not passed the course. Therefore, they would like to refine the previous
question and ask: “What are the profiles of the students who have not passed?”.
As before, this information can be computed using clustering techniques on the
students’ data, but removing those students that have passed from this data set.
Moreover, teachers are obviously interested in asking “What are the reasons why
my students failed?”. This might be partially answered applying classification
rules [8] on the students’ data, by analyzing the student activity logs to find out
these reasons.

Obviously, most teachers know nothing about clustering and classification
rules, so they cannot use these techniques directly by themselves. This is the
reason behind the aim of hiding these details to the end-user.

Next section analyses whether this objective can be achieved using current
state-of-art techniques.

3 Related Work

In general, to the best of our knowledge, there is little work done about how to
make data analysis techniques more usable to decision makers. The approaches
that tackles this issue can be grouped in two sets.

The first group aims to assist decision makers in the process of defining a data
analysis process. For instance, [5] defines a method where users are prompted
with different questions, which guide them to the definition of a data mining
process that fits in with their needs.

For example, a question could be if the decision maker is interested in com-
puting the profiles of a certain dataset. If so, the user is asked for more detailed
information that is required to execute this task. Some of these questions might
result confusing. For example, the user might be asked about how a certain data
is represented, if as a string or as a numerical value. In addition, answering these
questions can be a tedious process.

In [2], a query-by-example based language is defined. In basic query-by-
example, the decision maker constructs a prototype of the answer he or she
would like to get. This prototype is a table, where each column represents an
attribute of the desired answer. These columns can be constrained to certain val-
ues, which are used to filter certain results. [2] enhances this table with specific
columns to execute data mining processes. Again, the information we need to
supply in these columns requires some knowledge of the underlying data analysis

Domain Specific Languages for Data Mining: A Case Study for Educational Data Mining 37

SLATE’2015

technique to be applied, so the user is not completely unaware of these low-level
details. Moreover, the construction of these prototypes is based on data ware-
house concepts, such as OLAP (On-Line Analytical Processing) [16]. Average
decision makers also often lack of this kind of knowledge.

In the second group, software applications with prebuilt data mining pro-
cesses that can be directly executed by decision makers are developed. An exam-
ple of this strategy is e-Learning Web-Miner (eLWM) [17]. eLWM is a web-based
application whose objective is to allow instructors to analyse the performance
of a course hosted in an e-Learning platform. More specifically, at the moment
elWM offers instructors answers to three different queries: (1) what kinds of re-
sources are frequently used together (e.g., forum, mail) in each learning session;
(2) what are the profiles of the different sessions carried out by students; and
(3) what are the profiles of the students enrolled in a course.

In this case, the main limitation is that the set of queries is fixed and they
cannot be refined. For instance, if we wanted to compute the profiles of assign-
ments that are failed; or the profiles of students that do not pass the course, we
would need to modify the application.

By developing DSLs for data analysis, we expect to overcome these shortcom-
ings. Next sections describe how this task is accomplished for the educational
domain.

4 Grammar Specification

As previously commented, we will follow the process proposed by [9] for the
development of the DSL. According to this process, the first step to build a DSL is
to specify its grammar. Next subsections describe how this step is accomplished.

The definition of a grammar for a DSL, following a model-driven perspective,
implies the definition of an abstract syntax and a concrete syntax. The abstract
syntax specifies the grammar of a language independently of how this model is
represented. The concrete syntax specifies a specific rendering, either textual or
visual, for the abstract syntax. We describe both elements below.

4.1 Abstract Syntax

Abstract syntaxes are usually specified using metamodels [11]. A metamodel can
be considered as a model of the syntax of a language. For the construction of this
metamodel, we have used Ecore [15], which is the de-facto standard language
for metamodeling. Figure 1 shows the metamodel for our DSL syntax.

According to this metamodel, our language allows us to write queries. A
Query has a QueryClause. In the figure, two query clauses are depicted: Show-
Profile and FindReasonsFor. A query clause can be viewed as a command that
hides a data mining technique. Moreover, each query has an associated DataSet,
which must be available in a well-defined location.

Moreover, a data source can have an associated filter. A filter is a boolean
expression that selects the subset of instances of a data source that satisfies such

38 Alfonso de la Vega, Diego García-Saiz, Marta Zorrilla and Pablo Sanchez

SLATE’2015

Fig. 1. Abstract Syntax of our DSL

expression. The abstract syntax for boolean expressions are not shown in this
article for the sake of simplicity and brevity, as it is probably known by the
reader.

Filters are used to apply a query clause to a specific subset of a data source.
For instance, an instructor might be interested in selecting students that: (1) do
not pass a course; (2) drop out; or (3) are above or below a certain age, among
other options. Obviously, these filters must be written using the attributes of
the data source. For instance, if students’ age is not stored in the database, it
could not be used in a filter.

In the case of the FindReasonsFor clause, an additional condition is required
because the goal of this query is to compute the reason why certain instances
of the data source satisfies a certain condition. As before, this condition is a
boolean expression.

After developing the abstract syntax of our DSL, the next step is to specify
its concrete syntax, which is described in the following subsection.

4.2 Concrete Syntax

We have selected a textual syntax to define our DSL. However, this issue needs
to be further investigated, as some decision makers might prefer a graphical
notation.

For the definition of the textual concrete syntax, we have used Xtext [6],
which allows to define a textual syntax for a Ecore metamodel. By using this
framework, a grammar is defined following a notation similar to EBNF (Extended
BackusNaur Form), but where the production rules are enhanced with construc-
tions to create instances of metaclasses from the metamodel as the grammar is
parsed.

Figure 2 shows the concrete syntax for our DSL. Lines 00-02 specify the
namespace and name for the grammar; include a convenience package called

Domain Specific Languages for Data Mining: A Case Study for Educational Data Mining 39

SLATE’2015

00 grammar es.unican.dslEdm.Dsl

01 with org.eclipse.xtext.common.Terminals

02 import "EdDataMiningMetamodel"

03 import "http://www.eclipse.org/emf/2002/Ecore" as ecore

04 Query returns Query:

05 queryClause=QueryClause 'of' dataSet=DataSet;

06 QueryClause returns QueryClause:

07 ShowProfile | FindReasonsFor;

08 ShowProfile returns ShowProfile:

09 'show_profile';

10 FindReasonsFor returns FindReasonsFor:

11 'find_reasons_for' condition=BooleanExpression;

12 DataSet returns DataSet:

13 name=ID ('with' filter=BooleanExpression)?;

...

Fig. 2. Textual Concrete Syntax for our DSL

Terminals, provided by Xtext ; and specifies that the grammar will be based on
the EdDataMiningMetamodel metamodel, which is depicted in Figure 1.

Then, Lines 04-05 specify Query as the entry point of our grammar. A Query
is composed of a QueryClause, followed by the of keyword and the specification
of a Dataset. Both lines are equivalent to the EBNF rule Query ::= QueryClause
”of” DataSet.

Moreover, in Line 04, the return Query clause specifies that an instance of
the Query metaclass (see Figure 1) must be created when this production rule
is executed. Furthermore, the results of executing the DataSet and QueryClause
production rules must be assigned to the queryClause and dataSet attributes of
the Query metaclass, respectively.

Similarly, a QueryClause can be either a ShowProfile or a FindReasons-
For (Lines 06-07). In the first case, the query clause is simply written using
the show profile keyword (Lines 08-09). In the second case, after the keyword
find reasons for, a boolean expression that serves as condition for evaluating the
query is required (Lines 10-11).

Finally, a Dataset is simply represented by an identifier plus an optional filter
definition (Lines 12-13). This identifier must correspond to an available dataset.
This constraint is checked by means of external rules.

Once the grammar has been specified, a full editor for our grammar, with
syntax colouring, helpers and automatic formatting, as well as parsing, type-
checking and validation capabilities can be automatically generated by Xtext.
Using this editor, queries as shown in Figure 3 can be written.

40 Alfonso de la Vega, Diego García-Saiz, Marta Zorrilla and Pablo Sanchez

SLATE’2015

00 show_profile of Students;

01 show_profile of Students with courseOutcome=fail;

02 find_reasons_for courseOutcome=fail of Students;

Fig. 3. Queries written using the DSL

Thus, instructors can now write queries to analyse course performance by
using a terminology that is familiar to them. The next step is to provide execution
capabilities to these queries, which is achieved by translating them into Java
code.

5 Query execution

To compute the result of a query, data mining techniques are used. For instance,
to identify profiles in a dataset, clustering techniques must be chosen. Therefore,
the strategy to execute a query is to transform it into a Java code snippet which
invokes a prebuilt implementation of the corresponding data mining algorithm.
In our case, these prebuilt implementations are provided by Weka [7], a data
mining tool suite.

It should be taken into account that most data mining algorithms require
the specification of a set of input parameters, which are necessary for tuning the
algorithm. For instance, most clustering techniques require the specification of
the number of clusters to be built. Obviously, if the ultimate goal of the DSL
is to abstract the end user from data mining techniques, it cannot be expected
that the end-user provides the values for these parameters.

Therefore, these parameters have to be self-computed. Currently, there is a
research area inside the data mining field, known as parameter-less data mining,
that aims to build self-configuring data-mining algorithms. Thus, these tech-
niques will be used whenever possible.

To illustrate how this code generation process works, we describe how the
Show Profile queries are transformed into Java code. For the sake of clarity,
the code that is generated after processing the show profile of Students with
courseOutcome=fail; query will be used as an example. This piece of code is
shown in Figure 4.

For the Show Profile queries, the code generation process works as follows:

1. First, the dataset to be analysed is loaded, using the corresponding Weka
helper classes (Figure 4 Lines 04-05). The name of the dataset is obtained
from the attribute name of the Dataset metaclass. As previously indicated,
the parser must check that a dataset with that name exists before processing
the query.

Domain Specific Languages for Data Mining: A Case Study for Educational Data Mining 41

SLATE’2015

00 package processes;

01 import weka.[...]

02 public class ClusteringSnippet {

03 public static void main(String[] args) throws Exception {

04 DataSource source = new DataSource("Students.arff");

05 Instances ins = source.getDataSet();

06 Instances insFiltered = ins;

07 Attribute attrcourseOutcome = ins.attribute("courseOutcome");

08 String valuecourseOutcome = "fail";

09 RemoveWithValues filtercourseOutcome = new RemoveWithValues();

10 filtercourseOutcome.setAttributeIndex(Integer

 .toString(attrcourseOutcome.index() + 1));

11 filtercourseOutcome

 .setNominalIndices(Integer.toString(attrcourseOutcome

 .indexOfValue(valuecourseOutcome) + 1));

12 filtercourseOutcome.setInputFormat(ins);

13 filtercourseOutcome.setInvertSelection(true); // matching entries

14 insFiltered = Filter.useFilter(insFiltered, filtercourseOutcome);

15 XMeans xm = new XMeans();

16 xm.setMinNumClusters(2);

17 xm.setMaxNumClusters(20);

18 xm.buildClusterer(insFiltered);

19 HelperFunctions.save(xm);

 }

 }

Fig. 4. Code generated after processing a query

2. In case the dataset has an associated filter, the code to perform this filtering
is generated. Thus, the boolean expression which defines the filter must be
transformed into the corresponding Weka code that filters a dataset based
on the value of certain attributes. Figure 4, Lines 06-14 shows the code that
is generated for filtering those students whose courseOutcome is fail.

3. Then, the code for executing the clustering algorithm on the loaded dataset
is generated (Figure 4 Lines 15-18). As clustering algorithm, xMeans [12] is
used. The advantage of this algorithm is that it can estimate the number of
clusters that should be created for a particular dataset. xMeans only requires
that this number is bound to a certain range. So, if the lower and upper
bounds of this range are set to proper values, the xMeans algorithm can be
used as a self-configuring algorithm. Since teachers expect to find at least two
different students groups, 2 is a reasonable lower bound. For a normal course,
20 is a number of clusters higher enough to be considered as an upper bound.
So, the responsibility of determining the number of clusters to be created is
assigned to the xMeans algorithm, which automatically calculates it.

4. Finally, the result of the xMeans algorithm is placed in an output file, which
is read by a visualization tool in order to adequately render the results in a
user-friendly way.

The code generation process for the find reasons for queries would be similar,
but a different data mining algorithm would be invoked. This code generation

42 Alfonso de la Vega, Diego García-Saiz, Marta Zorrilla and Pablo Sanchez

SLATE’2015

process has been implemented using code generation templates. More specifically,
we have used EGL (Epsilon Generation Language) [10], which is a language for
generating code from Ecore-based models.

With this last step, the development of our DSL for Educational Data Mining
is finished. DSLs for analyzing data in other domains can be developed following
the same process.

Next section discusses whether this DSL satisfies the objectives of this work
and concludes this article.

6 Conclusions

This article has shown how a Domain-Specific Language for Educational Data
Mining can be developed. This DSL allows teacher and instructors of courses
hosted in e-learning platforms to analyze the performance of their teaching-
learning processes by means of analyzing the data contained in such a platform.
The DSL approach provides two benefits as compared to current state-of-art
techniques.

First, the DSL abstracts low level-details of data analysis techniques, so it
can be used by instructors without any knowledge of data analysis techniques,
helping to bridge the gap between data analysis tools and decision makers. The
DSL syntax only contains high-level keywords and references to entities and
attributes of the target domain data model. Thus, the DSL contains a terminol-
ogy that should be known by the decision makers, who would be instructors and
teachers in the educational domain case.

Secondly, the DSL is flexible enough to support the elaboration of arbitrary
complex new queries. This is an advantage as compared to approaches that de-
velop tools able to compute concrete tasks. eLWM [17] is an example of such a
tool. As commented in Section 3, using eLWM students’ profiles of a course can
be computed. However, this analysis cannot be modified for computing, for ex-
ample, the profiles of students above a certain age. Similarly, we cannot compute
profiles of other entities, such as assignments, without requiring a modification
of the tool.

Thus, the DSL offers a more flexible interaction as compared to domain-
specific data-mining tools. There exists limitations, as it is not possible to use
non-defined building blocks, this is, query clauses. The included set of clauses
should cover the feasible questions decision makers have previously formulated.
In addition, the queries must be written following the syntactic rules of the
grammar, as the necessity to parse them with a computer prevents the usage of
most informal expressions present in natural language.

As future work, we expect to add more query options to the DSL for the
Educational Domain, as well as to develop DSLs for other domains. More specif-
ically, we are interested in developing DSLs for the performance analysis of work
processes in the public administration.

Domain Specific Languages for Data Mining: A Case Study for Educational Data Mining 43

SLATE’2015

References

1. Arthur, D., Vassilvitskii, S.: K-means++: The advantages of careful seeding. In:
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). pp. 1027–1035. New Orleans (Louisiana, USA) (January 2007)

2. Azevedo, A., Santos, M.: Binding Data Mining to Final Business Users of Business
Intelligence Systems. 1st Int. Conference on Intelligent Systems and Applications
(Intelli) pp. 7–12 (April-May 2012)

3. Baesens, B.: Analytics in a Big Data World: The Essential Guide to Data Science
and its Application. Wiley (2014)

4. Bughin, J., Chui, M., Manyika, J.: Clouds, Big Data and Smart Assets: Ten Tech-
enabled Business Trendsto Watch. McKinsey Quarterly pp. 1–14 (2010)

5. Espinosa, R., Garćıa-Saiz, D., Zorrilla, M., Zubcoff, J.J., Mazón, J.N.: Enabling
Non-expert Users to Apply Data Mining for Bridging the BigData Divide. In:
Ceravolo, P., Accorsi, R., Cudre-Mauroux, P. (eds.) Data-Driven Process Discovery
and Analysis, Lecture Notes in Business Information Processing, vol. 203, pp. 65–
86 (2015)

6. Eysholdt, M., Behrens, H.: Xtext: Implement Your Language Faster than the Quick
and Dirty Way. In: Companion to the 25th Annual Conference on Object-Oriented
Programming, Systems, Languages, and Applications (SPLASH/OOPSLA). pp.
307–309. Reno/Tahoe (Nevada, USA) (October)

7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:
The WEKA Data Mining Software: An Update. SIGKDD Explorations Newsletter
11(1), 10–18 (June 2009)

8. Han, J.: Data Mining: Concepts and Techniques. Morgan Kaufmann (2005)
9. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages

Using Metamodels. Addison-Wesley Professional (2008)
10. Kolovos, D.S., Paige, R.F., Rose, L.M., Williams, J.R.: Integrated Model Man-

agement with Epsilon. In: France, R.B., Küster, J.M., Bordbar, B., Paige, R.F.
(eds.) Proc. of the 7th European Conference on Modelling Foundations and Appli-
cations (ECMFA). pp. 391–392. Lecture Notes in Computer Science, Birmingham
(England, United Kingdom) (June 2011)

11. Kühne, T.: Matters of (Meta-)Modeling. Software and System Modeling 5(4), 369–
385 (December 2006)

12. Pelleg, D., Moore, A.: X-means: Extending K-means with Efficient Estimation of
the Number of Clusters. In: roceedings of the 17th International Conferemce on
Machine Learning. pp. 727–734. Morgan Kaufmann (2000)

13. Romero, C., Ventura, S.: Data mining in education. Wiley Interdisciplinary Re-
views: Data Mining and Knowledge Discovery 3(1), 12–27 (2013)

14. Sierra, J.L.: Language-Driven Software Development (Invited talk). In: Pereira,
M.J.V., Leal, J.P., Simões, A. (eds.) 3rd Symposium on Languages, Applications
and Technologies. OpenAccess Series in Informatics (OASIcs), vol. 38, pp. 3–12
(2014)

15. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework. Addison-Wesley Professional, 2 edn. (December 2008)

16. Wrembel, R., Koncilia, C.: Data Warehouses And Olap: Concepts, Architectures
And Solutions. IRM Press (2006)

17. Zorrilla, M., Garćıa-Saiz, D.: A service-oriented architecture to provide data mining
services for non-expert data miners. Decision Support Systems 55(1), 399 – 411
(2013)

44 Alfonso de la Vega, Diego García-Saiz, Marta Zorrilla and Pablo Sanchez

SLATE’2015

WSDLUD: A Metric to Measure the Understanding
Degree of WSDL Descriptions

Mario Marcelo Berón1 Hernán Bernardis1 Enrique Miranda1 Daniel Riesco1,
Maria João Varanda Pereira2, and Pedro Rangel Henriques3

1 Universidad Nacional de San Luis, Argentina
2 Dpt.Informatica/Centro Algoritmi, IPB, Bragança, Portugal

3 Dpt.Informatica/Centro Algoritmi, Universidade do Minho, Braga, Portugal

{mberon,hbernardis,driesco}@unsl.edu.ar; prh@di.uminho.pt;
mjoao@ipb.pt

Abstract. In this article, WSDL Understanding Degree (WSDLUD) a
metric aimed at measuring a priori the understandability of WSDL
(Web Services Description Language) descriptions is presented. In order
to compute WSDLUD, all the static information available in a WSDL
description is collected. This information is submitted to an evaluation
process based on a method named LSP (Logic Scoring of Preference). This
evaluation process outputs a Global Preference value that indicates the
satisfaction level of the WSDL description regarding the evaluation focus,
in this case, the understanding degree.

Keywords: WSDL; Web Services Comprehension; LSP

1 Introduction

Nowadays the Web Services (WS) are fundamental software artifacts for
building service oriented applications4. The organizations, increasingly,
produce web services which are used by other organizations to produce
new software systems aimed at solving business demands. Web services
have associated a description which specifies the data types used, the
operations provided, inputs and output, the technology used to accomplish the
communications between other high level and low level of software elements.
These descriptions are published in the internet and the organizations can
retrieve them and decide if some of those services are useful for building the
software they need [12]. Web Services are software packages and therefore they
must be comprehend for maintenance tasks (bug fixing, adaptation, evolution,

4 According to World Wide Web Consortium (W3C, for details see http://www.w3.

org/), a WS is: a software application identified by a URI, whose interfaces and bindings
are capable of being defined, described, and discovered as XML artifacts. A WS supports
direct interactions with other software agents using XML-based messages exchanged via
Internet-based protocols.

IV Symposium on Languages Applications and Technologies Pages 45–54
18th and 19th June, Madrid, Spain 978-84-606-8762-7

etc.). The primary information source to accomplish this task is the respective
WSDL (Web Service Description Language)5 description. Although, there are
several resources from which it is possible to collect information about the Web
Service, the WSDL description is the first that the user employs for analysing
its usefulness for his purposes. Furthermore, the web service descriptions are
interesting because they provide a high level abstraction data which can be
very useful to simplify the understanding of the web services. As said above,
a standard language used to write web service descriptions is WSDL. This
language is a dialect of XML with well defined rules to specify each component.
Being a XML based language it is fastidious to read such a description, and
therefore a tool is needed to assist the software engineer in this task. In this
context, many tools can be found that are oriented to facilitate the inspection
of WSDL descriptions, transform to a different WSDL version, compute several
metrics, produce user-friendly visualizations, etc. However, at the best of
our knowledge, only a few are oriented to help their understanding. Taking
this into consideration, in this article WSDLUD (Web Service Understanding
Degree) is presented. WSDLUD is a metric aimed at providing, a priori, a
measurement about the WSDL description understanding complexity. For
calculating WSDLUD, Logic Scoring of Preference Method (LSP) [7, 14] is
used. LSP is a multi-criteria evaluation method; it requires a Criteria Tree,
an Aggregation Structure and a set of Elementary Criteria Functions to be
defined. Combining systematically such elements, this method produces a
satisfaction level that indicates, in this case, the understanding degree of a
WSDL description. In order to apply LSP and compute WSDLUD, the WSDL
description must be statically analysed and all the information available must
be retrieved. This information is submitted to different evaluation procedures
in order to obtain satisfaction values 6. To perform these processes, the use of
both compilation and natural language processing techniques are required. The
first is used to retrieve formal elements from WSDL source code. The second
is employed to gather semantic information from unstructured information
sources.
The article is organized as follow. Section 2 describes the work tightly related
with the research topics here presented. Section 3 defines the WSDLUD
evaluation structures. Section 4 presents the case studies where it is possible
to observe the results obtained through the application of WSDLUD to some
test cases available in W3C. Section 5 closes the paper with some conclusions
and future work.

2 Related Work

The WSDL description analysis is based on static and behavioral information.
The traditional approaches are oriented to compute metrics to compare and
evaluate a set of program parameters. [2, 13, 15].

5 http://www.w3.org/TR/wsdl20/
6 values in [0,1] (or [0,100])

46 M. Berón, H. Bernardis, E. Miranda, D. Riesco, M. J. Varanda Pereira and P. Henriques

SLATE’2015

Considering static information, authors [13] have defined metrics for
organization security. In this context, the authors affirm that the easier to
understand a WSDL description the easier will be to carry out fraudulent
actions against the organization. On account of that, the authors compute
the understanding level of WSDL description and if it is high they define
approaches to diminish its readability.

The second, based on behavioral information, is concerned with measuring
the WSDL description considering the complexity of the operations and
messages involved. The more complex the operations and messages are, the
more complex will be to understand the WSDL description [9].

It is also possible to find works that use ad-hoc approaches. They are based
on traditional object oriented metrics to measure quality attributes of WSDL
descriptions [5, 6].

WSDLUD metric, defined in this article, is different from those found in the
literature in several aspects. First, all formal elements of the WSDL description
(types, port types, bindings, services) are considered and for each one of them
the understanding degree is measured.

Second, the WSDL description’s understandability can be simplified if the
informal information (those provided by the identifiers and documentation)
gives useful semantic information about the description’s domain. For
this reason, several metrics to measure the quality of the identifiers and
documentation of the description, are defined and calculated.

Third, the value of our metric is produced by the combination of other
metrics (those mentioned before) which consider both formal and informal
information. We used these metrics to measure WSDL descriptions and obtain
a final value for each of them. This final value is computed by using a
multi criteria method. This method is parameterizable allowing to reflect the
engineer experience in the evaluation mechanism. Finally, as a side effect, the
process used to compute WSDLUD can also be used for: i) To provide a ranking
of WSDL descriptions understandability, ii) To build visualizations based in
charts, and allow to analyse the results and to discover the possibilities to
improve the WSDL description understanding.

To finish this section, it it important to notice that, at best of our knowledge,
a metric with the characteristics mentioned above was not described in the
literature. So, we believe that the work here reported is a valid contribution
for the comprehension of WSDL specifications.

3 WSDLUD

In this section, all the concepts and processes involved in the definition and
measurement of WSDLUD are described in detail.

WSDLUD: A Metric to Measure the Understanding Degree of WSDL Descriptions 47

SLATE’2015

3.1 WSDL Description Criteria Tree

The criteria tree of a WSDL description7 is composed by the following
characteristics: i) Type Understanding Degree, ii) Message Understanding
Degree, iii) Port Type Understanding Degree, iv) Binding Understanding
Degree and v) Service Understanding Degree. Each characteristic has an
associated sub criteria tree which takes into consideration the proper properties
of the evaluated element.

In the next paragraphs the characteristics mentioned above will be
developed, for each of them, the Criteria Tree will be explained.

Type Understanding Degree. This characteristic is composed by the following
attributes: Number of Primitive Types, Number of Complex Types, Documentation
Quality, Type Name Quality and Number of Fields. Clearly, a primitive type8

will be easier to understand than a complex type9. A primitive type can be
deduced from its identifier and the explanations provided by the language
manual. A complex type is more difficult of perceiving because it is composed
by several identifiers, which are susceptible to do many analysis and the
explanations exposed in the language manual are not enough. In this context,
if the documentation provided is bad or null, the comprehension will be even
more difficult.

Message Understanding Degree. This characteristic can be evaluated taking
into consideration the following attributes: Message Documentation Quality,
Message Name Quality and Part Understanding Degree. Concerning the
first two elements, it is possible to say that they will provide relevant
information when some semantic information can be extracted. For that the
following components are considered: name, element name and type. The
sub-characteristic named Part Understanding Degree which can be divided in
Part Name Quality, Part Element Name Quality and Part Type Understanding
Degree attributes. All these attributes must also be considered when the
message understandability needs to be measured.

Port Type Understanding Degree. This characteristic has the following
attributes: Port Type Name Quality, Port Type Documentation Quality and Port
Operation Understanding Degree.

The first two are important because they provide semantic information
when they are well defined. Semantic information can also be extracted
from Port Operation Understanding Degree measuring the Port Type Operation
Understanding Degree.

The definition of this characteristic follows the same approach that message
part, in other words to each simple operation element we consider some

7 These characteristics were extracted from a WSDL specification provided by W3C
8 A Primitive Type is a type provided by the language, for example: text, integer, real,

boolean, etc.
9 A Complex Type is a type defined by the user

48 M. Berón, H. Bernardis, E. Miranda, D. Riesco, M. J. Varanda Pereira and P. Henriques

SLATE’2015

attributes like name, documentation, parameters, etc. (more details about the
disaggregation of this sub-characteristic can be found in [3]).

Binding Understanding Degree. This characteristic is composed by the
following attributes: Binding Name Quality, Binding Documentation Quality,
Binding Type Understanding Degree and Binding Operation Understanding Degree.

Once more the name quality and the documentation quality are important
characteristics to measure using the attributes: Binding Name Quality and
Binding Documentation Quality. The other two attributes are already defined
in others characteristics. Binding Type Understanding Degree is defined in Type
Understanding Degree and Binding Operation Understanding Degree is defined in
Port Type Understanding Degree. For this reason, during evaluation process we
re-use the values obtained in previous computation.

Service Understanding Degree. A service is made available by a WSDL
description. A service has a name and documentation and it is composed
by ports. For analyzing the Service Understanding Degree it is necessary to
measure Service Name Quality, Service Documentation Quality and Service Port
Understanding Degree in a Service context.

3.2 Aggregation Structure

As LSP method states [14], the satisfaction values that result from the
application of the Elementary Criteria Functions to the measurable attributes,
must be aggregated in order to obtain the Global Preference. This Global
Preference represents the satisfaction of the object under evaluation. As could
be seen in subsection 3.1, we propose a Criteria Tree for each WSDL element
(type, message, port, etc.). For each of these Criteria Trees, we developed a
specific Aggregation Structure. To illustrate the approach and to save space,
in Fig.1 we only show the Aggregation Structure for the characteristic Message
Understanding Degree.

We used a partial absorption LSP function (compound by operator A
and SQU10) to aggregate Message Documentation Quality and Message Name
Quality. This kind of asymentric compound operators are used when some
input values could be zero (non-mandatory input). It is necessary because
in many cases, messages do not have a good documentation (sometimes do
not have at all). A medium conjunctive operator (CA) is used to compute
the Message Understanding Degree Global Preference. This kind of operator
is employed when the input requirements are mandatory. Thus if one of
the input values is zero, the operation result will be zero. The weights are
used to express the relative importance of input preference. As message
documentation and name provides more significant semantic information, its
weight is 70%, as opposed to Part Understanding Degree which provides less
semantic information (its weight is 30%).

10 A is the arithmetic mean and SQU the square mean. All the LSP operators are better
explained in [8]

WSDLUD: A Metric to Measure the Understanding Degree of WSDL Descriptions 49

SLATE’2015

Fig. 1. Message Understanding Degree Aggregation Structure.

3.3 Information Extraction Techniques and Elementary Criteria Functions

The information extraction techniques and the Elementary Criteria Functions
are the most important features for the evaluation process that will be
described. The former allows to obtain the information and perform all the
analysis to get each attribute value for the Criteria Tree. The latter maps each
of these in a satisfaction level, i.e., a value in the interval [0,1] (or [0,100]). This
value represents the satisfaction degree of the attribute for the object under
evaluation according to the sensibility and experience of the authors.

Information Extraction Techniques The approach used to extract information
from a WSDL description combines compilation techniques, natural language
processing algorithms and strategies to compute indicators [4]. The first are
implemented using DOM (Domain Object Model) a parser for XML language
which explicitly builds an internal representation of the analysed XML source
code. Several traversals are applied through this internal representation for
gathering the desired information. The identifiers and the documentation
are extracted by using compilation techniques. In order to retrieve semantic
information IdA (Identifier Analysis) [1] is used. IdA is a tool aimed at
applying algorithms to divide, expand and find a meaning for the identifiers
of a program. Finally, with the goal to provide a measure about of the
understanding degree of a WSDL description, NESSy [11] was used. Nessy is a
tool to evaluate software based on LSP method.

For attributes like Type Name Quality (see in algorithm 1 the computation
process of the satisfaction level of Type Name Quality Criterion), Message Name
Quality or Binding Name Quality we use identifier analysis techniques.

The purpose of this analysis is to discover the relation between the names
and the concepts of the problem domain. The name quality is higher when
its related words are meaningful. The result of the techniques is a percentage
which indicates the satisfaction level for a particular name quality.

For attributes like Type Documentation Quality, Message Documentation
Quality, Binding Documentation Quality, etc., we use documentation analysis
techniques. This kind of attributes has as main goal to measure the usefulness
level of the information provided by the element’s documentation (IdA also is

50 M. Berón, H. Bernardis, E. Miranda, D. Riesco, M. J. Varanda Pereira and P. Henriques

SLATE’2015

used to carry out this task). The analysis techniques gathers documentation and
returns a percentage which represents the satisfaction level for the attribute
under study. In first place the documentation is divided by words, then the
irrelevant words are deleted. The next step consists of analysing each word and
count those that have a useful meaning. The result is obtained carrying out the
following computation:Number of Word with Mean

Number of Words .

Algorithm 1: Satisfaction Level of Type Name Quality Criterion
input : typeName a string which represents a type name.
output: Satisfaction Level, a percentage that indicates the satisfaction level of the

criterion Type Name Quality.
Data: wordSet,stopWords a set of words.
Data: pal a string which represent a word extracted from a type name.
Data: wordsWithMeans an integer variable which counts the number of words

extracted from a type name which have meaning.
wordSet←division(typeName);
stopWords←extractStopWords(wordSet);
wordSet←wordSet-stopWords;
wordsWithMean←0;
foreach w in wordSet do

pal=expand(w);
if hasMean(pal) then

wordsWithMean←wordsWithMeans + 1;
end
return (wordsW ithMeans

|wordSet|);

Elementary Criteria Functions In this evaluation process, the majority of
Elementary Criterion Function are direct mappings, since most of the attributes
values are computed by extraction techniques. They take as input the strings to
be analysed and return a percentage value that could directly be mapped to a
satisfaction value.

4 Case Study

This section presents the evaluation of five WSDL descriptions using LSP and
the structures defined in Section 3 [10]. All descriptions belong to web services
frequently used by information systems:

i) Google Web APIs 11, provides operations to do Google searchs, ii) Create
Queue (Amazon)12, offers a reliable, highly scalable hosted queue for storing
messages as they travel between computers, iii) Airport13, provides useful
information of all world airports (e.g. airport codes, names, countries, countries

11 https://code.google.com/p/dic/downloads/detail?name=GoogleSearch.wsdl
12 http://queue.amazonaws.com/doc/2009-02-01/QueueService.wsdl
13 http://www.webservicex.com/airport.asmx?wsdl

WSDLUD: A Metric to Measure the Understanding Degree of WSDL Descriptions 51

SLATE’2015

code, latitude, longitude, etc.) iv) Global Weather 14, gets weather report for
all major cities around the world, and v) OFAC 15 aids banks in meeting the
requirements of the US Treasury Department’s Office of Foreign Asset Control
(OFAC).

High-Level Characteristic Google Weather Amazon Airport OFAC
Types U. D. 60,2665 71,5131 68,8148 72,2303 40,5846

Messages U. D. 69,1173 83,3624 79,753 77,4924 58,8801
Port Types U. D. 75,7194 81,4166 82,1289 81,8902 45,3519
Bindings U. D. 75,5258 79,3457 82,2505 79,5241 42,755
Services U. D. 78,9946 79,6724 89,4138 79,7011 42,0794
Final Scores 71,5594 77,0112 80,1496 78,0884 45,4495

Table 1. Partial and global evaluation of WSDL

Table 1 shows the global understanding degree for each WSDL description.
Each Global Preference was computed aggregating all the characteristic
preferences with the logical operator CA (this function simulates simultaneity)
and the weight equally distributed among the characteristics (20% for each
one). The choice of this operator is due to the fact that all WSDL components
(type, message, port type, etc.) must be understandable. If one of these is
incomprehensible, the whole WSDL will be difficult to understand.

As can be seen in Table 1, almost all WSDL are very similar taking
into account understanding degree, except for OFAC WSDL description. This
is because that description has numerous identifiers with acronyms which
decreases the satisfaction levels.

Weather and Airport define each type using a few primitive and complex
types. Furthermore they specify explicit and unambiguos identifiers. On the
other hand, Google uses a number of primitive and complex types that exceed
the established thresholds. The majority of messages’s parts of Weather WSDL
uses primitive types and this fact rise its Messages Understanding Degree
satisfaction value.

In general, Amazon WSLD presents more documentation than others in
different parts, like messages, types, port types and services. This makes this
WSDL the most understandable of the case study.

From another point of view, this set of metrics was proposed to measure
each component individually inside a WSDL. In this sense, we could compare,
for example, all elements of a kind that a WSDL contains (e.g. types, messages
or services), in order to analyze it individually. This is could be useful for
maintainability or re-structuring purposes. In this context, we measure three

14 http://wsf.cdyne.com/WeatherWS/Weather.asmx?WSDL
15 http://www.webservicex.net/OFACSDN.asmx?WSDL

52 M. Berón, H. Bernardis, E. Miranda, D. Riesco, M. J. Varanda Pereira and P. Henriques

SLATE’2015

messages that presents Create Queue (Amazon) WSDL description. In this
context, we measure the quality of three different messages of the Create Queue
(Amazon) WSDL description and the results can be seen in table 2.

Sub-characteristic SendMessageResponse RemovePermissionRequest DeleteMessageResponse
M. Doc. Quality 0 0 0

M. Name Quality 100 100 100
M. Parts U. D. 60,9759 93,6933 73,1726
Final Scores 73,17 83,5379 77,6729

Table 2. Messages individual measurement of Create Queue (Amazon) WSDL
description.

As can be seen, RemovePermissionRequest message is the most
understandable of these three messages and SendMessageResponse the worst.
This is basically due to Message Part Understanding Degree satisfaction values.

This is a comparative analyse that allows to identify the most critical parts
of the description. If we want to analyse the results individually we would say
that a score less than 50% represents a candidate description for improvement.

5 Conclusion

In this article WSDLUD a metric, to measure the understanding degree
of WSDL description, was defined. In order to compute WSDLUD other
metrics were also specified. These metrics have as main goal to provide an
estimation about the understanding degree of each description part. Each part
is associated with an importance level specified by the engineer. Both values
(understanding degree and importance level) are used by LSP (a multi criteria
evaluation method) to produce a global value which represents the desired
WSDL description understanding degree.

We believe that our approach is novel because it makes possible to analyse
each part of a particular WSDL description as well as the global understanding
degree. Yet more important, all the engineer’s experience can be included in
the evaluation process in order to get more significant results. All the detailed
information provided by our system can be used to identify the most critical
parts of the description and the chances for quality improvement. In some
cases, the description can be simplified or made more readable. But, in other
cases, the complexity of the description is full dependent on the domain
complexity and there is not chance for improvement.

As future work we intend to: i) Improve the Criteria Tree (CT) and
Aggregation Structure (AS); ii) Extend the work presented in this paper to
WSDL 2.0; iii) Apply a similar analysis to study business processes specified
with BPEL (Business Process Execution Language).

WSDLUD: A Metric to Measure the Understanding Degree of WSDL Descriptions 53

SLATE’2015

References

1. Azcurra, J., Berón, M., Montenjano, G., Farnese, A., Henriques, P., M.Pereira.: AId:
Uma Ferramenta para Análise de Identificadores de Programas Java. In: Congreso
Nacional de Ingenierı́a Informática/Sistemas de Información, 2014. pp. 880–892
(Noviembre 2014)

2. Bernardis, H., Beron, M., Riesco, D., Henriques, P.R.: Extracción de información
y cálculo de métricas en WSDL 1.1 y 2.0. In: Congreso Nacional de Ingenierı́a
Informática/Sistemas de Información. pp. 963–974 (Noviembre 2014)

3. Beron, M., Henriques, P.R., Riesco, D., Pereira, M.J.V.: On the Comprehension of
WSBPEL Programs. Tech. rep., Universidad Nacional de San Luis - Universidade do
Minho (2015)

4. Carvalho, N.R.: An Ontology Toolkit for Problem Domain Concept Loction in
Program Comprehension. Ph.D. thesis, Escola de Engenaria, Universidade do
Minho (2014)

5. Coscia, L.O., Crasso, M., Mateos, C., Zunino, A.: Estimating Web Service interface
quality through conventional object-oriented metrics. CLEI Electronic Journal 16(1)
(2013), http://www.clei.org/cleiej/paper.php?id=258

6. Coscia, L.O., Mateos, C., Crasso, M., Zunino, A.: Refactoring code-first Web
Services for early avoiding WSDL anti-patterns: Approach and comprehensive
assessment. Sci. Comput. Program. 89, 374–407 (2014), http://dx.doi.org/10.
1016/j.scico.2014.03.015

7. Dujmovic, J.: Continuous Preference Logic for System Evaluation. IEEE
Transactions on Fuzzy Systems 15(6), 1082–1099 (Dec 2007)

8. Dujmovic, J.: Characteristic forms of generalized conjunction/disjunction. In:
Fuzzy Systems, 2008. FUZZ-IEEE 2008.(IEEE World Congress on Computational
Intelligence). IEEE International Conference on. pp. 1075–1080. IEEE (2008)

9. Kumar, R., Indraveni, K., Goel, A.K.: Automation of detection of security
vulnerabilities in Web Services using dynamic analysis. In: 9th Int. Conf. on Internet
Technology and Secured Transactions (ICITST). pp. 334–336 (Dec 2014)

10. Liu, L., Sun, T., Fang, W., Liu, N.: Usability evaluation of the subway train
dispatching system. In: Information Science and Technology (ICIST), 2011
International Conference on. pp. 1123–1128 (March 2011)

11. Miranda, E., Berón, M., Montejano, G., Pereira, M.J.V., Henriques, P.R.: NESSy: a
New Evaluator for Software Development Tools. In: 2nd Symposium on Languages,
Applications and Technologies, SLATE 2013, June 20-21, 2013 - Porto, Portugal. pp.
21–37 (2013), http://dx.doi.org/10.4230/OASIcs.SLATE.2013.21

12. Newcomer, E.: Understanding Web Services: XML, WSDL, SOAP, and UDDI.
Addison-Wesley Professional (2002)

13. Sripairojthikoon, P., Senivongse, T.: Concept-based readability measurement and
adjustment for web services descriptions. In: 16th Int. Conf. on Advanced
Communication Technology (ICACT). pp. 378–388 (Feb 2014)

14. Su, S., Dujmovic, J., Batory, D.S., Navathe, S.B., Elnicki, R.: A Cost-benefit Decision
Model: Analysis, Comparison Amd Selection of Data Management. ACM Trans.
Database Syst. 12(3), 472–520 (Sep 1987), http://doi.acm.org/10.1145/27629.
33403

15. Tibermacine, O., Tibermacine, C., Cherif, F.: A Practical Approach to the
Measurement of Similarity between WSDL-basedWeb Services. RNTI: Revue des
Nouvelles Technologies de l’Information Special Issue CAL 2013(RNTI-L-7), 03–18
(2014)

54 M. Berón, H. Bernardis, E. Miranda, D. Riesco, M. J. Varanda Pereira and P. Henriques

SLATE’2015

Towards the generation of graphical modelling
environments aided by patterns

Antonio Garmendia, Ana Pescador, Esther Guerra, and Juan de Lara

Universidad Autónoma de Madrid (Spain)

Abstract. Model-Driven Engineering (MDE) promotes the use of mod-
els to conduct all phases of software development in an automated way.
Such models are described using Domain Specific Modelling Languages
(DSMLs). While the definition of DSMLs and their supporting environ-
ments are recurring activities in MDE, they are mostly developed ad-hoc
from scratch. This paper proposes the use of patterns to describe the ab-
stract and concrete graphical syntax of DSMLs, and to automate the
generation of a graphical modelling environment for them.

Keywords: Model-Driven Engineering, Domain Specific Languages, Pat-
terns, Graphical Modelling Environments

1 Introduction

Model-Driven Engineering (MDE) promotes a model-centric approach for soft-
ware development. While models can be described using general-purpose mod-
elling languages, like UML, it is frequent the use of Domain Specific Modelling
Languages (DSMLs) focussed on the particularities of a domain [5].

Hence, the creation of DSMLs is recurrent in MDE, for which one needs to
describe their abstract and concrete syntax, their semantics, and developing a
suitable modelling environment for them. Although there are software frame-
works to ease the development of textual and graphical environments [5–7], the
creation of DSMLs is mostly an ad-hoc process lacking the ability to build on
existing knowledge coming from the construction of similar DSMLs.

To simplify the creation of DSMLs, we propose their assisted construction
by means of patterns. In particular, domain patterns describe recurring concepts
common to a domain, and concrete syntax patterns gather standard representa-
tion options for DSMLs and enable the synthesis of modelling environments. As
a proof of concept, we show a prototype implementation for Eclipse.

2 Overview

The design of a DSML encompasses several aspects, including abstract syntax,
concrete syntax, and semantics. In addition, editing DSML models is usually
performed using a dedicated environment providing services like model persis-
tence, conformance checking, and others more advanced. We propose the use of

IV Symposium on Languages Applications and Technologies Pages 55–60
18th and 19th June, Madrid, Spain 978-84-606-8762-7

NodeElement

GraphicElement

color: String

paletteName: String

paletteIcon: String

IconElement

filePath: String

radius: float width: float

height: float

width: float

height: float

Rhombus

@abstract elements

 0..*

target
source

0..*

0..*

link

*

0..*

ContainerElement
@abstract

0..*

0..*

Root

EdgeElement

0..*

Circle Rectangle 0..* 0..*

label: String
StateMachine

StateVertex

* states

name: String

Transition

name: String

*
source

target

outgoing

incoming

*
*

Simple

State

Final

State Event

trigger 0..1
Initial

State

transitions

0..1 0..1
0..1

state-machine domain pattern 0..1

contains

graph-based concrete syntax pattern

Fig. 1: Domain pattern (left). Graph-based concrete syntax pattern (right).

patterns to address all these aspects, to facilitate and speed up their definition.
By lack of space, we focus on patterns dealing with the abstract and concrete
syntax, as well as the generation of modelling environments from them.

To deal with the abstract syntax, we propose domain patterns, gathering typ-
ical requirements of similar languages within a domain, and documenting their
variability. Here, there may be patterns for workflow languages, arithmetical/-
logical expressions, variants of state machines, query languages, and component-
based architectural languages, among others. A DSML may use several domain
patterns, customized for a given need, and extended with other domain-specific
concepts. These patterns may help to build a DSML more quickly and trust-
worthily, in a constructive way. As an example, Fig. 1 (left) shows a simplified
domain pattern for state machines. Pattern elements have a cardinality, which
governs how many times they can be instantiated (1 if no cardinality is speci-
fied). For instance, any application of the state-machine pattern should have one
SimpleState, while it may lack InitialState and FinalState.

On the other side, concrete syntax patterns characterize families of similar
representations [1], like textual, graphical, tabular or form-based. In the case
of a graphical syntax, aspects like layouting or zooming may be configured.
Moreover, concrete syntax patterns can be used to automate the generation of
editors supporting the defined syntax (which otherwise should be implemented
by hand), and can be attached to domain patterns in order to define different
default visualization options for them. As an example, Fig. 1 (right) shows a
simplified pattern for graph-based representation. This pattern permits assigning
graphical elements (Circles, Rectangles, etc.) to elements in the DSMLmeta-model.

Altogether, in order to define DSMLs, we propose a reutilization-based,
pattern-centric approach, which we have implemented in our prototype tool DSL-
tao (http://jdelara.github.io/DSL-tao/). DSL-tao enables the construction
of meta-models, where some meta-model parts can be defined through the appli-
cation of existing patterns in a repository. Basic pattern application is performed
in three steps. First, a pattern is selected and a wizard guides the designer in
its application (see window 1 in Fig. 2 for the wizard of the state-machine pat-

56 Antonio Garmendia, Ana Pescador, Esther Guerra and Juan De Lara

SLATE’2015

1
2

Fig. 2: The wizard for pattern application (1). Applied pattern (2).

tern). In this step, variants and attached patterns can also be selected (see next
section). Then, the designer can bind meta-model elements to pattern elements.
Finally, the unbound pattern elements are automatically created new in the
meta-model, annotated with their participant role in the pattern (window 2).

The next section presents two ways to describe and generate graphical envi-
ronments for DSMLs using patterns.

3 Defining graphical DSMLs through patterns

We propose two ways to describe the graphical syntax of a DSML. In the first
one, domain patterns have attached a default visualization, which the DSML
designer just reuses. This option profits from commonly agreed means to rep-
resent domain patterns (e.g., state machines, or component-based systems). In
the second option, a dedicated wizard is used to apply a graphical pattern over
the elements of the DSML meta-model. This approach is to be used when the
DSML needs a non-predefined, or special syntax.

Using the visual syntax attached to domain patterns

Domain patterns may have attached concrete syntaxes, accounting for typical
representations of the domain concepts. For instance, Fig. 2 shows the applica-
tion of the state-machine pattern. The pattern has three concrete syntax patterns
attached: one for the standard graph-based representation, another for its repre-
sentation as tables, and another using forms. Designers can select one of them.
In this way, when the domain pattern is applied, the concrete syntax pattern will
be automatically instantiated as well. Thus, this approach permits predefining a
set of concrete visualizations, which can be reused “as is” by DSML designers.

Using the dedicated custom wizard

Sometimes, the designer requires a fine grained control of the concrete syntax for
the DSML, or he has not used domain patterns with attached concrete syntax. In
such cases, the designer can still use a concrete syntax pattern to automate the
generation of a modelling environment, for which he needs to map meta-model
elements to concrete representations in the selected pattern. Since the applica-
tion of concrete syntax patterns has many specificities (like selecting figures for
nodes and decorations for edges), patterns may provide dedicated wizards for
their application. For instance, the graph-based concrete syntax pattern has a

Towards the generation of graphical modelling environments aided by patterns 57

SLATE’2015

Fig. 3: Dedicated wizard for assigning a graph-based concrete syntax.

customized wizard that implements heuristics to decide which classes will be rep-
resented as nodes, which ones as edges, the attributes to display, and the nodes
that are containers of other nodes. Then, the designer can refine the inferred
concrete syntax and fine-tune the visual representation for nodes and edges.

The left of Fig. 3 shows the wizard to customize the following heuristics:

– Root strategies: These are alternatives to select the root class to be used in
diagrams. The root class is usually a class that contains all elements of the
model, directly or indirectly. The strategy Contains more classes counts how
many classes contain each class, and selects the one that contains more. The
strategy Class with no parents suggests classes that are not contained in other
classes. Both strategies are based on the tree of containment references defined
in the meta-model. The last strategy (Modularity pattern) selects as root the
meta-model classes annotated as Unit by a modularity pattern [4] (not shown
in this paper) that allows organizing models in a modular way.

– Label selection: These heuristics are used to decide the data that node-like
classes will display close to the node representation. The strategy First string
attribute displays the first string attribute of the class, and Identifier of the
class its identifier. The strategy Parameter string attribute receives several
input strings, and selects the attribute whose name contains some of them.

– Arc strategies: They are used to select edge-like classes. In this case, we select
the classes that define two non-containment references with lower bound 0 or
1 and upper bound 1. These two references will be mapped to the source and
target of the edge representation for the class. While the first strategy (Sim-
ple direction arc strategy) selects the source and target references randomly,
the second one (Parameter direction arc strategy) takes into account possible
naming conventions (e.g., source or src for the source reference).

– Link selection strategies: These strategies identify the references that will be
displayed graphically as edges, and those that will be represented as a con-
tainer for the elements that conform to the type of the reference. If the strategy
Containment references as links is selected, all containment references will be
represented as links, while if the selected strategy is Containment references
as compartments, they will be shown as containers.

58 Antonio Garmendia, Ana Pescador, Esther Guerra and Juan De Lara

SLATE’2015

The wizard uses the heuristics to infer the optimal concrete representation of
meta-model elements, which are proposed to the designer in a second step (see
right of Fig. 3). The, the designer is allowed to modify the inferred syntax, as
well as fine-tune the concrete visualization for nodes and edges to customize the
decorations for the start and end of edges, the types of figures for nodes, their
size and colour. This last step is not shown in the figure.

Finally, although we have presented the wizard for the graph-based concrete
syntax pattern, the same idea could be used to implement further strategies
for this or other concrete syntax patterns. Currently, we support tabular and
form-based representations, in addition to graph-based ones.

The generated graphical environment

Fig. 4: Generated graphical modelling environment.

The modelling environ-
ment for a DSML can
be synthesized from its
meta-model. For this pur-
pose, DSL-tao invokes the
code generators of the ser-
vices associated to the ap-
plied patterns. For graph-
ical concrete syntax pat-
terns, the generator cre-
ates an Eclipse plugin
that uses the Sirius graph-
ical framework [6] as
backend. Thus, once the
meta-model is annotated
with the concrete syntax
pattern, a Sirius .odesign
model is generated. This
model describes the shapes for nodes, the style for edges, the mappings of graphi-
cal elements to meta-model elements, the elements in the palette, and the actions
to be performed when palette elements are invoked. Technically, this model is
created using a model transformation. Then, the Sirius model is packaged in a
plugin, which is contributed to the modelling environment of the DSML.

Fig. 4 shows the generated graphical environment for the meta-model shown
to the right of Fig. 2, which was created by instantiating the default concrete
syntax pattern attached to the domain pattern for state machines.

4 Related work

There are many tools to develop graphical modelling environments for different
applications, like meta-CASE tools [5], diagram sketching [2] or multi-formalism
modelling and simulation [3]. The advent of Eclipse has promoted frameworks to

Towards the generation of graphical modelling environments aided by patterns 59

SLATE’2015

construct visual editors as plugins, like GMF1, Eugenia2, Spray3, Graphiti4, or
Sirius [6]. All these tools are model-based, except Graphiti which provides a Java
API for coding. Some generate artefacts for other lower-level approaches, like Eu-
genia which is built atop GMF, and Spray atop Graphiti. In our case, DSL-tao
produces graphical editors based on Sirius. All frameworks use code generation
except Sirius, which is interpreted. The way of specifying the concrete syntax
varies: Eugenia requires annotating the meta-model elements, Spray uses a tex-
tual DSL, GMF and Sirius require building models that describe the concrete
syntax, and Graphiti requires programming. Our approach is closer to Eugenia,
as our pattern applications result in meta-model annotations. However, our do-
main patterns can attach concrete syntax styles, which speeds up the generation
of graphical environments. This feature is unique among the mentioned tools.

5 Conclusions and future work

We have presented a pattern-based approach to the development of graphical
DSMLs. The approach is supported by a tool which permits applying patterns
from a repository and the automatic generation of a modelling environment. We
are currently working on defining new patterns, and developing further services
for graphical environments like support for layers and abstractions.

Acknowledgements. Work supported by the Spanish Ministry of Economy and
Competitivity (TIN2011-24139 and TIN2014-52129-R), the R&D programme of
the Madrid Region (S2013/ICE-3006), and the EU commission (FP7-ICT-2013-
10, #611125).

References

1. P. Bottoni and A. Grau. A suite of metamodels as a basis for a classification of
visual languages. In VL/HCC, pages 83–90, 2004.

2. F. Brieler and M. Minas. A model-based recognition engine for sketched diagrams.
J. Vis. Lang. Comput., 21(2):81–97, 2010.

3. J. de Lara and H. Vangheluwe. Atom3: A tool for multi-formalism and meta-
modelling. In FASE, volume 2306 of LNCS, pages 174–188. Springer, 2002.

4. A. Garmendia, E. Guerra, D. S. Kolovos, and J. de Lara. EMF splitter: A structured
approach to EMF modularity. In XM@MoDELS, volume 1239 of CEUR, pages 22–
31. CEUR-WS.org, 2014.

5. S. Kelly and J. Tolvanen. Domain-specific modeling - enabling full code generation.
Wiley, 2008.

6. Sirius. https://eclipse.org/sirius/.
7. Xtext. http://www.eclipse.org/Xtext/.

1 https://wiki.eclipse.org/Graphical_Modeling_Framework
2 http://eclipse.org/epsilon/doc/eugenia/
3 https://code.google.com/a/eclipselabs.org/p/spray/
4 http://eclipse.org/graphiti/

60 Antonio Garmendia, Ana Pescador, Esther Guerra and Juan De Lara

SLATE’2015

Speech Features for Discriminating Stress Using
Branch and Bound Wrapper Search

Mariana Julião1, Jorge Silva1, Ana Aguiar1,
Helena Moniz2,3, and Fernando Batista2,4

1 Instituto de Telecomunicações,
Rua Dr. Roberto Frias, s/n Porto 4200-465, Portugal.

http://www.it.pt
2 INESC-ID, Lisboa, Portugal

3 FLUL/CLUL, Universidade de Lisboa, Portugal
4 ISCTE - Instituto Universitário de Lisboa, Portugal

meinf12013@fe.up.pt,up201007483@alunos.dcc.fc.up.pt,

ana.aguiar@fe.up.pt,helenam@l2f.inesc-id.pt,fernando.batista@l2f.

inesc-id.pt

Abstract. Stress detection from speech is a less explored field than Au-
tomatic Emotion Recognition and it is still not clear which features are
better stress discriminants. VOCE aims at doing speech classification
as stressed or not-stressed in real-time, using acoustic-prosodic features
only. We therefore look for the best discriminating feature subsets from
a set of 6285 features – 6125 features extracted with openSMILE toolkit
and 160 Teager Energy Operator (TEO) features. We use a mutual in-
formation filter and a branch and bound wrapper heuristic with an SVM
classifier to perform feature selection. Since many feature sets are se-
lected, we analyse them in terms of chosen features and classifier perfor-
mance concerning also true positive and false positive rates. The results
show that the best feature types for our application case are Audio Spec-
tral, MFCC, PCM and TEO. We reached results as high as 70.36% for
generalisation accuracy.

Keywords: Stress, emotion recognition, ecological data, feature sets,
feature selection.

1 Introduction

The motivations for detecting stress from speech range from it being a non-
intrusive way to detect stress, to ranking emergency calls [6], or improve speech
recognition systems, since it is known that environmentally induced stress leads
to fails on speech recognition systems [11]. Public Speaking is said to be “the
most common adult phobia” [13], showing the relevance of a tool to improve
public speaking. In VOCE3, we target developing such a tool, by developing
algorithms to identify emotional stress from live speech. In particular, VOCE

3http://paginas.fe.up.pt/∼voce

IV Symposium on Languages Applications and Technologies Pages 61–70
18th and 19th June, Madrid, Spain 978-84-606-8762-7

corpus comes mainly from public speaking events that occur within academic
context, like presentations of coursework or research seminars. The envisioned
coaching application requires detecting emotional stress in live speech in near
real time, to give the user timely feedback, which requires adapting the com-
putational costs to the limited memory and computational resources to use.
Reducing the number of features used for classification reduces the amount of
data to collect, the amount of features to be extracted and the complexity of
the classifier, impacting a reduction in the memory and computational resources
used. Additionally, feature selection can increase the classifier’s accuracy [10].
Thus, in this paper, we focus on identifying these reduced feature sets based on
their performance as stress discriminators.

The Fundamental Frequency, F0, is the most consensual feature for stress
discrimination [25, 16, 7, 12], but several metrics for energy and formant changes
have been proposed, often represented by Mel-Frequency Cepstral Coefficients
(MFCCs) [25, 15, 6]. Frequency and amplitude perturbations – Jitter and Shim-
mer –, and other measures of voice quality, like Noise to Harmonics Ratio and
Subharmonics to Harmonics Ratio [22, 20] have also been used. Teager En-
ergy Operator-based features have also shown to perform well in speech under
stress [25, 26].

In this work, we start from the union of two feature sets: the group of fea-
tures extracted using the openSMILE toolkit [19], and the group of TEO-based
features, to be detailed on Sect. 3.2. We filter these feature sets with Mutual
Information and then use a branch-and-bound wrapper to explore the space of
possible feature sets. Finally, we analyse the best feature sets chosen on various
branches for most frequently chosen feature categories.

2 Speech Corpus and Data Annotation

The VOCE corpus [2] currently consists of 38 raw recordings from voluntaries
aged 19 to 49. Data is recorded in an ecological environment, concretely during
academic presentations4. Speech was automatically segmented into utterances,
according to a process described in [5].

Annotation into stressed or neutral classes was performed per speaker, based
on the mean heart rate [4]. Utterances on the third quartile of mean heart
rates for that speaker are annotated as stressed, while the remaining ones are
annotated as neutral.

Using an ecologically collected corpus imposes an unavoidable trade-off be-
tween the quality of the recording and the spontaneity of the speaker. Higher
quality of the recording not only allows more reliable feature extraction, in gen-
eral, but also impacts the performance of the segmentation algorithms we use to
split the speech into sentence-like units – utterances –, and do text transcription,
necessary for the extraction of TEO features. For these reasons, we chose only
21 raw recordings for this work.

4Please refer to [3] for details on the collection methodology.

62 Mariana Julião, Jorge Silva, Ana Aguiar, Helena Moniz and Fernando Batista

SLATE’2015

Table 1. Dataset demographic data. PSE: Public Speaking Experience, 1 - 5: 1 - little
experience, 5 - large experience.

Train Set Test Set
Age Gender PSE #Utts Age Gender PSE #Utts

26 male 2 56 24 male 3 97
22 male 2 39 19 male 2 61
24 male 3 36 19 male 3 86
21 male 3 38 19 female 3 64
22 male 3 32 23 female 4 71
22 male 3 25 19 female 3 63
25 male 2 54
19 male 3 12
21 male 3 22
21 female 3 51
24 female 5 27
22 female 2 37
21 female 3 32
21 female 3 18
19 female 3 28

For these speakers, 1457 valid utterances were obtained5. The set of utter-
ances is divided into 15 speakers (507 utterances) for training and 6 speakers
(442 utterances) for testing. Since the number of stressed utterances corresponds
to approximately 1/4 of the total, we randomly down-sampled the train data in
order to balance the two classes, which led to the mentioned 507 utterances.
During feature selection, the classifier was trained on 354 utterances and tested
on 153 utterances. These utterances belonged to the train set. Table 1 charac-
terises the dataset concerning age, gender, public speaking experience, and the
number of utterances considered6.

We performed outlier detection on each feature using the Hampel identi-
fier [14] with t = 10. The outliers were then replaced by the mean value of the
feature excluding outliers, and feature values were scaled to the interval [0;1].

3 Methodology

Figures 1(a) and 1(b) illustrate the workflow for speech segmentation and feature
selection, respectively.

5Remaining utterances after discarding 94 utterances with length of less than 1
second or more than 25 seconds.

6Please note that the stated number of utterances on the train set corresponds to
the one actually used after discarding a part of the neutral utterances, and not to the
number of utterances in the natural set.

Speech Features for Discriminating Stress Using Branch and Bound Wrapper Search 63

SLATE’2015

(a) Speech segmentation process.

(b) Feature selection process.

Fig. 1. Workflow

3.1 Acoustic-prosodic features

The set of Functional Features is “obtained by applying statistic functionals to
the low-level descriptors (LLD) computed over the segment” [9, 19], and provides
a total of 6125 utterance level features [19]. The LLD are “a set of 128 frame
level features extracted each 10 ms from the signal” [9]. These features and their
extraction processes are described in [8] and [18].

The openSMILE toolkit is capable of extracting a very wide range of acoustic-
prosodic features and has been applied with success in a number of paralinguistic
classification tasks [17]. It has been used in the scope of this study to extract a
feature vector containing 6125 speech features, by applying segment-level statis-
tics (means, moments, distances) over a set of energy, spectral and voicing related
frame-level features.

3.2 Teager Energy Operator features

We extracted TEO-Based features: Normalized TEO autocorrelation envelope
and Critical band based TEO autocorrelation envelope as in [25]. The literature
where Normalized TEO autocorrelation envelope and Critical band based TEO
autocorrelation are presented does the feature extraction for small voiced parts
usually called “tokens” [25].

To work equivalently, we did a phone recognition with the delimitation of
each phone [1] and used only voiced sounds.

These correspond to phones represented by the portuguese SAMPA symbols
‘i’, ‘e’, ‘E’, ‘a’, ‘6’, ‘O’, ‘o’, ‘u’, ‘@’, ‘i∼’, ‘e∼’, ‘6∼’, ‘o∼’, ‘u∼’, ‘aw’, ‘aj’, ‘6∼j∼’,
‘v’, ‘z’, ‘Z’, ‘b’, ‘d’, ‘g’, ‘m’, ‘n’, ‘J’, ‘r’, ‘R’, ‘l’, ‘L’. [23, Chap. IV.B]

These features are extracted per frame. The length of each frame is about
10ms, depending on the feature to extract. Each phone usually contains many
frames and each utterance has normally many phones. Therefore, since we want
to have values per utterance, we consider each feature extracted for all phones

64 Mariana Julião, Jorge Silva, Ana Aguiar, Helena Moniz and Fernando Batista

SLATE’2015

and apply statistics to it. These statistics are: mean, standard deviation, skew-
ness, kurtosis, first quartile, median, third quartile, and inter-quartile range.
This process is also illustrated in Fig. 1(a). The first two columns in Table 2
summarise the feature types considered in this work7.

Table 2. Feature Types: Id, Name, Number of features of each type selected for MI,
Number of features of each type chosen for the Best Sets: T.A.1, T.A.2, G.A., Se., Sp.,
and Comb. . *- Type not selected by the best sets. †- Type always selected by the best
sets.

Id Type MI T.A.1 T.A.2 G.A. Se. Sp. Comb.

1 F0final* 10 0 0 0 0 0 0

2 TEO† 17 3 2 1 3 2 3

3 audSpec Rfilt† 187 8 8 6 7 6 6
4 audspec* 6 0 0 0 0 0 0
5 audspecRasta* 4 0 0 0 0 0 0
6 jitterDDP 6 0 0 1 0 0 0
7 jitterLocal* 7 0 0 0 0 0 0
8 logHNR 8 1 0 0 0 1 1

9 mfcc sma† 119 7 8 4 2 3 4
10 pcm Mag fband 17 0 0 1 2 1 0
11 pcm Mag harmonicity 14 1 0 0 0 0 0

12 pcm Mag psySharpness† 6 3 2 1 1 1 2
13 pcm Mag spectralEntropy 6 0 1 0 0 0 1
14 pcm Mag spectralFlux 8 0 1 0 0 0 0
15 pcm Mag spectralKurtosis* 7 0 0 0 0 0 0
16 pcm Mag spectralRollOff 22 1 0 0 0 0 0
17 pcm Mag spectralSkewness* 1 0 0 0 0 0 0
18 pcm Mag spectralSlope 6 0 1 1 0 0 0
19 pcm Mag spectralVariance* 10 0 0 0 0 0 0
20 pcm RMSenergy 6 1 1 1 1 1 0
21 pcm zcr 8 0 0 0 1 0 0
22 shimmerLocal* 8 0 0 0 0 0 0
23 voicingFinalUnclipped* 4 0 0 0 0 0 0

4 Searching for the Best Feature Sets

As already stated, we apply one filter to reduce the dimensionality from initially
6285 functional (OS) plus TEO features before applying the wrapper with a

7The generic designation “type” is the result of aggregating Low Level Descriptor
features with their derived functionals (e.g., quartiles, percentiles, means, maxima,
minima). This procedure is, in our perspective, a way to better group and interpret
the performance of the features

Speech Features for Discriminating Stress Using Branch and Bound Wrapper Search 65

SLATE’2015

Support Vector Machine (SVM) classifier with radial basis function kernel and
C=1008, using python library scikit-learn.

4.1 Filter: Mutual Information

There are several metrics and algorithms to compute the relevance of features
on a dataset, and the choice of this metric may hugely impact the final subset of
features. However, since there is a lack of a priori knowledge about filter metric
adequacy to specific datasets [24], we based our choice on the work of Sun and
Li et al. [21], which showed good results in terms of classification for Mutual
Information (MI), a metric that measures the mutual dependence between two
random variables.

Since MI is based on the probability distribution of discrete variables and our
features have continuous values, we had to define a binning. We (1) defined five
binning possibilities: 50, 100, 250, 500 or 1000 bins; (2) computed MI for each
feature and each binarisation possibility; (3) kept features for which the MI value
belonged to the higher quartile for all binarisation options. Their distribution
per feature type corresponds to the third column in Table 2.

4.2 Wrapper

We designed a branch and bound wrapper to search the space of feature sets
obtained from the MI filter for the combination of features that deliver the best
classifier performance. This wrapper starts by searching all combinations of sets
up to 10 features, keeping all that are within 1.5% accuracy of the best solution
found so far. Larger feature sets are obtained by expanding the previously kept
solutions with blocks of features not yet in the sets. Every time a feature subset
is tested with a classification algorithm, a score is produced, which is the accu-
racy, in this case. Subsets are kept and expanded if the expansion improves the
previous accuracy. This search runs until the work list of feature sets with new
combinations empties. This wrapper provides a better exploration of the feature
set space than traditional forward and backward wrappers. Since the search
space for our wrapper is much bigger than for most wrapper methods, we used
parallel programming techniques to improve the throughput of the algorithm,
using python’sMultiprocessing package.

5 Results and Discussion

The mutual information filter selected 487 features, distributed into types as
described in the third column of Table 2. After choosing the best 280 feature
sets with training accuracies below 85% from 20 processors, we looked at their
distribution by feature types, which is on Fig. 2.

8This value was found empirically to produce the best classification results.

66 Mariana Julião, Jorge Silva, Ana Aguiar, Helena Moniz and Fernando Batista

SLATE’2015

Among these 280 feature sets we looked for the ones having the best scores
in each of the considered metrics9: Train Accuracy, Generalisation Accuracy,
Sensitivity (Se), Specificity (Sp)10, and a Combined Metric defined as

CombinedMetric =
(Se + Sp)

2
− |Sp− Se| . (1)

The need for this metric follows from the fact that it is our goal not only to
have a good generalisation accuracy, but also to have high sensitivity and high
specificity at the same time. This is relevant since, as we have an imbalanced
test set, with much more neutral utterances than stressed utterances, it can
happen that high generalisation results are due to high values of true positives,
while true negatives are neglected – which is the kind of scenario we want to
avoid. On Tab. 3, each line corresponds to the best feature subset for which the
metric specified in the first column was found to be maximum. The two last
lines correspond to baseline results, meaning the classification for the whole set
of features and for the set of MI filtered features.

Columns T.A.1, T.A.2, G.A., Se., Sp., and Comb, in Table 2, correspond to
the best feature sets, according to each of these metrics, as exposed in Table 3.
Each of the Columns in Table 2 signs the number of features of each type (each
line corresponds to a feature type).

Table 3. Metrics for the Best Subsets as percentage

Set Train
Acc.

Gen.
Acc.

Sens. Spec. Comb. # features

Train Acc. 84.97 61.76 59.81 62.39 58.53 25
Train Acc. 84.97 62.22 52.34 65.37 45.82 24

Gen. Acc. 81.70 70.36 33.64 82.09 9.42 16

Sensitivity 81.70 59.28 71.96 55.22 46.85 17

Specificity 81.05 70.14 31.78 82.39 6.47 15

Combined 81.70 64.03 61.68 64.78 60.14 17

Complete — 63.12 50.47 67.16 42.13 6285
MI — 60.86 45.79 65.67 35.85 487

Table 3 bears the following information:

– The sets of best train accuracy do not correspond to the ones with best
generalisation accuracy. Actually, these have the second worse generalisation
results among these sets.

9Generalisation Accuracy, Sensitivity and Specificity are computed on the test set.
10Being TP - number of True Positives, TN - number of True Negatives, FP -

number of False Positives, FN - number of False Negatives, Sensitivity= TP
TP+FN

and

Specificity= TN
TN+FP

.

Speech Features for Discriminating Stress Using Branch and Bound Wrapper Search 67

SLATE’2015

– The set of best generalisation accuracy, as well as the set of best specificity,
although having very good generalisation accuracies have very low sensitiv-
ities. This is the kind of imbalance we want to avoid.

– The same train accuracy can have sets of very different quality. We see that
for train accuracy 81.70% we have the best generalisation accuracy, the best
sensitivity and the best combined metric. Looking at the other columns in
the table we see that only the line for Combined Metric has acceptable results
in sensitivity and specificity.

– These best reduced sets often achieve better results than both the complete
set and the filtered set, having much smaller sets, which is very good for the
envisioned real-time public speaking coaching application.

0 50 100 150 200 250
Vector Subsets

23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

Fe
at

ur
e

ty
pe

0

1

2

3

4

5

6

7

#
 Features

Fig. 2. Heatmap for feature type frequencies on each
subset.

1 F0final
2 TEO
3 audSpec Rfilt
4 audspec
5 audspecRasta
6 jitterDDP
7 jitterLocal
8 logHNR
9 mfcc sma
10 pcm Mag fband
11 pcm Mag harmonicity
12 pcm Mag psySharpness
13 pcm Mag spectralEntropy
14 pcm Mag spectralFlux
15 pcm Mag spectralKurtosis
16 pcm Mag spectralRollOff
17 pcm Mag spectralSkewness
18 pcm Mag spectralSlope
19 pcm Mag spectralVariance
20 pcm RMSenergy
21 pcm zcr
22 shimmerLocal
23 voicingFinalUnclipped

The set of features selected by the Mutual Information filter are, grosso modo,
the ones reported in the literature for other languages (e.g., [12, 26]). Those
encompass pitch information, mostly final movements of pitch, audio spectral
differences, voice quality features (jitter, shimmer, and harmonics-to-noise-ratio)
and TEO features, the latter usually described as very robust across gender and
languages. As for PCMs and MFCCs, these features are very transversal in
speech processing tasks and highly informative for a wide range of tasks, not
surprising, thus, for stress detection as well. The features selected by Mutual
Information filter give us a more complete characterization of stress predictors.
From these set the ones that are systematically chosen in the best features sets
using the wrapper are mostly TEO, MFCCs and audio spectral differences. TEO
and MFCCs features are also reported by [26], for English and Mandarin, as the
most informative ones, even more than pitch itself.

68 Mariana Julião, Jorge Silva, Ana Aguiar, Helena Moniz and Fernando Batista

SLATE’2015

6 Conclusions

We have used a corpus of ecologically collected speech to search for the best
speech features that discriminate stress. Starting from 6125 features extracted
with openSMILE toolkit and 160 Teager Energy features, we used a mutual in-
formation filter to obtain a reduced subset for stress detection. Next, we searched
for the best feature set using a branch and bound wrapper with SVM classifiers.

Our results provide further evidence that the features resulting from the
Mutual Information filtering process are robust for stress detection tasks, inde-
pendently of the language, and highlight the importance of voice quality features
for stress prediction, mostly high jitter and shimmer and low harmonics to noise
ratio, parameters typically associated with creaky voice.

Our best result compares well with related work.

Acknowledgments. This work was supported by national funds through Funda-
ção para a Ciência e Tecnologia (FCT) by project VOCE (Voice Coach for
Reduced Stress) PTDC/EEA-ELC/121018/2010, UID/CEC/50021/2013, and
Post-doc grant SFRH/PBD/95849/2013.

References

1. Abad, A., Astudillo, R.F., Trancoso, I.: The L2F spoken web search system for
mediaeval 2013. In: Proceedings of the MediaEval 2013 Multimedia Benchmark
Workshop, Barcelona, Spain, October 18-19, 2013. (2013)

2. Aguiar, A., Kaiseler, M., Meinedo, H., Almeida, P., Cunha, M., Silva, J.: VOCE
corpus: Ecologically collected speech annotated with physiological and psycholog-
ical stress assessments. In: Chair), N.C.C., Choukri, K., Declerck, T., Loftsson,
H., Maegaard, B., Mariani, J., Moreno, A., Odijk, J., Piperidis, S. (eds.) Proceed-
ings of the Ninth International Conference on Language Resources and Evaluation
(LREC’14). European Language Resources Association (ELRA), Reykjavik, Ice-
land (May 2014)

3. Aguiar, A.C., Kaiseler, M., Meinedo, H., Abrudan, T.E., Almeida, P.R.: Speech
stress assessment using physiological and psychological measures. In: Mattern, F.,
Santini, S., Canny, J.F., Langheinrich, M., Rekimoto, J. (eds.) UbiComp (Adjunct
Publication). pp. 921–930. ACM (2013)

4. Allen, M.T., Boquet, A.J., Shelley, K.S.: Cluster analyses of cardiovascular re-
sponsivity to three laboratory stressors. Psychosomatic Medicine 53(3), 272–288
(1991)

5. Batista, F., Moniz, H., Trancoso, I., Mamede, N.J.: Bilingual experiments on auto-
matic recovery of capitalization and punctuation of automatic speech transcripts.
IEEE Transactions on Audio, Speech, and Language Processing 20(2), 474–485
(2012)

6. Demenko, G.: Voice stress extraction. Proceedings of the Speech Prosody 2008
Conference (2008)

7. Demenko, G., Jastrzebska, M.: Analysis of voice stress in call centers conversations.
Proc. of Speech Prosody, 6th International Conference, Shanghai, China (2012)

Speech Features for Discriminating Stress Using Branch and Bound Wrapper Search 69

SLATE’2015

8. Eyben, F., Wllmer, M., Schuller, B.: Opensmile: the munich versatile and fast open-
source audio feature extractor. In: Bimbo, A.D., Chang, S.F., Smeulders, A.W.M.
(eds.) ACM Multimedia. pp. 1459–1462. ACM (2010)

9. Ferreira, J., Meinedo, H.: VOCE project stress feature survey technical report 2.
Tech. rep., L2F, Inesc-ID, Lisboa, Portugal (November 2013)

10. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal
of Machine Learning Research 3, 1157–1182 (2003)

11. Hansen, J.H., Bou-Ghazale, S.E., Sarikaya, R., Pellom, B.: Getting started with
the susas: A speech under simulated and actual stress database. Technical Report:
RSPL-98-10 (1998)

12. Hansen, J.H., Patil, S.A.: Speech under stress: Analysis, modeling and recognition
(2007)

13. Miller, T.C., Stone, D.N.: Public speaking apprehension (psa), motivation, and af-
fect among accounting majors: A proofofconcept intervention. Issues in Accounting
Education 24(3), 265–298 (2009)

14. Pearson, R.K. (ed.): Exploring Data in Engineering, the Sciences, and Medicine.
Oxford University Press (2011)

15. Sarikaya, R., Gowdy, J.N.: Subband based classification of speech under stress. In:
ICASSP. pp. 569–572 (1998)

16. Scherer, K.R., Grandjean, D., Johnstone, T., Klasmeyer, G., Bnziger, T.: Acoustic
correlates of task load and stress. In: Hansen, J.H.L., Pellom, B.L. (eds.) INTER-
SPEECH. ISCA (2002)

17. Schuller, B., Steidl, S., Batliner, A., Burkhardt, F., Devillers, L., MüLler, C.,
Narayanan, S.: Paralinguistics in speech and language-state-of-the-art and the chal-
lenge. Comput. Speech Lang. 27(1), 4–39 (Jan 2013)

18. Schuller, B., Batliner, A., Seppi, D., Steidl, S., Vogt, T., Wagner, J., Devillers, L.,
Vidrascu, L., Amir, N., Kessous, L., Aharonson, V.: The relevance of feature type
for the automatic classification of emotional user states: low level descriptors and
functionals. In: INTERSPEECH. pp. 2253–2256. ISCA (2007)

19. Schuller, B., Steidl, S., Batliner, A., Nth, E., Vinciarelli, A., Burkhardt, F., van
Son, R., Weninger, F., Eyben, F., Bocklet, T., Mohammadi, G., Weiss, B.: The
interspeech 2012 speaker trait challenge. In: INTERSPEECH. ISCA (2012)

20. Sun, X.: A pitch determination algorithm based on subharmonic-to-harmonic ratio.
In: the 6th International Conference of Spoken Language Processing. pp. 676–679
(2000)

21. Sun, Z., Li, Z.: Data intensive parallel feature selection method study. 2014 Inter-
national Joint Conference on Neural Networks (IJCNN) pp. 2256–2262 (Jul 2014)

22. Vogt, T., André, E., Wagner, J.: Automatic recognition of emotions from speech: a
review of the literature and recommendations for practical realisation. In: In LNCS
4868. pp. 75–91 (2008)

23. Wells, J.: Handbook of Standards and Resources for Spoken Language Systems.
Mouton de Gruyter (1997)

24. Wolpert, D.H.: The Lack of A Priori Distinctions Between Learning Algorithms.
Neural Computation 8(7), 1341–1390 (Oct 1996)

25. Zhou, G., Hansen, J., Kaiser, J.: Nonlinear feature based classification of speech
under stress. Speech and Audio Processing, IEEE Transactions on 9 (2001)

26. Zuo, X., Fung, P.N.: A cross gender and cross lingual study on acoustic features
for stress recognition in speech. In: Proceedings 17th International Congress of
Phonetic Sciences (ICPhS XVII), Hong Kong. pp. 2336–2339 (2011)

70 Mariana Julião, Jorge Silva, Ana Aguiar, Helena Moniz and Fernando Batista

SLATE’2015

Oriya Morphological Analyzer Using Lttoolbox

Itisree Jena, Himani Chaudhry, and Dipti Misra Sharma

International Institute of Information Technology, Hyderabad, India
{itisree,himani}@research.iiit.ac.in,dipti@iiit.ac.in

Abstract. A Morphological analyzer is an essential tool for many NLP
applications. Developing a fully-fledged morphological analyzer (MA)
tool for an agglutinative language like Oriya is a challenging task. This
paper deals with development of a MA for Oriya, a resource poor lan-
guage. The MA is being developed using the paradigm approach. It con-
sists of various paradigms under which nouns, pronouns, adjectives, verbs
and indeclinables are classified. The paradigms have been created for in-
flected forms using an XML based morphological dictionary from the
Lttoolbox package. At present, a total of 10,840 words have been en-
tered into the dictionary. In the course of the paper we talk about the
design and implementation of the MA. We also talk about the issues and
limitations experienced in developing it using Lttoolbox.

Keywords: Oriya Morphological Analyzer; Apertium; Lttoolbox; Com-
pound Verb; Paradigm approach; Morphological Analyzer

1 Introduction

Efforts are on for past many years, to develop various of NLP tools such as Mor-
phological Analyzers (MA), Part-of-Speech (POS) taggers, spell checkers and
so on, for Indian languages (ILs), to assist tasks such as Machine Translation.
These efforts to develop NLP tools for ILs have especially focused on computa-
tional morphology, since ILs are morphologically quite rich. Developing an Oriya
MA becomes important, to help build these tools for the language. This work
presents the design and development of a MA for Oriya.

The official language of the state of Odisha (Orissa), Oriya, now officially
pronounced ‘Odia’ belongs to the eastern branch of the Indo Aryan sub family
of the Indo-European language. It has the status of the sixth classical language in
India. Around 31 million people are using this language. “Oriya is a syntactically
head-final and morphologically agglutinative language” [15]. Thus, quite some
information is contained in morphological structures in Oriya.

The nouns in Oriya are generally characterized by inflectional categories like
number, gender, case and also take articles and number classifiers. The definite
articles ‘-ti’ and ‘-taa’ occur only with singular nouns. Its plural markers in-
clude ‘-maane’, ‘-gudaa’, ‘-gudika’, ‘-gudaaka’. The plural marker ‘-maane’ is only
added to animate nouns e.g. ‘pua+maane (son+s). It can not be added to either
human proper nouns or in-animate nouns. Thus, we can not say ‘kaatha+maane’

IV Symposium on Languages Applications and Technologies Pages 71–80
18th and 19th June, Madrid, Spain 978-84-606-8762-7

(wood+s). Oriya has natural gender that does not reflect in the agreement with
grammatical categories like verbs. For example, baagha (tiger) and baaghuNi
(tigress). Examples will be represented by roman transliteration.

In Oriya, “adjectives which precede the nouns in attributive position do not
show any agreement with the nouns except in a few cases where the adjective
agrees with the noun in gender” [12]. For example, kaLaa baLada (black bull),
kaaLi gaaii (black cow).

Oriya finite verbs are marked for person, number, tense, aspect and mood.
They agree with subject nouns and this is reflected by an agreement marker that
manifests attached to the end of the main verb. For example:

aame khaa-il-u

we eat-pst-agr.

‘We ate’

1.1 Related Work

Various methods have been adopted for morphological analysis in natural lan-
guage processing. Brute Force method, Root Driven approach, Affix Stripping
method are some of the methods evolved typically for the analysis of ILs. MAs
being developed using the paradigm approach include Hindi MA by Bharati et al.
(1995) [3], and the Marathi MA by Bapat et al. (2010) [2], of which, [2] combine
a paradigm based inflectional system with finite state machines for modeling the
morphotactics. Marathi derivational MA by Vaidya et al. (2009) [16], Tamil MA
by Parameshwari (2011) [13] and Benagli by Faridee et al. (2009) [7], all adopt
paradigm approach using Lttoolbox to develop their MA, which is similar to our
work, discussed later in this paper.

Further, Oriya MA have been developed by Shabadi (2003) [15], Sahoo (2003)
[14] using deterministic Finite State Automata (FSA), where the FSA recognize
if the input string of morphemes is an appropriate Oriya word or not. They
do this by plugging each forms into the FSA, using two level morphology. The
work propose a model which can provide lexical, morphological and syntactic
information for each lexical unit in the analyzed word form. The second approach
followed for Oriya is our work using Lttoolbox from the Apertium toolkit which
we have reported in Jena et al. (2011) [8].

2 Current Work

2.1 Approach

We have adopted the paradigm based approach to create a MA for Oriya.
Paradigms are employed to represent the inflectional regularities of lexical units
in a language [6]. A paradigm is a set of related word forms which follow the
same set of spelling rules and take the same kind of affixes. “Paradigm approach
is well suited for agglutinative language nature” [1]. Oriya being an agglutinative
language, the paradigm approach seems to work well for it.

72 Itisree Jena, Himani Chaudhry and Dipti Misra Sharma

SLATE’2015

2.2 Resources Used

Lexical Resources. The foremost requisite for a MA is a root word dictionary.
But, Oriya being a resource poor language, an online root word dictionary wasn’t
available for it. We, thus, manually created the dictionary using the following
resources:

– ‘Taruna Sabdakosha’ [9] an Oriya dictionary.

– ‘A synchronic grammar of Oriya’ [12].

– A corpus of 2,720,400 words from Central Institute of Indian Languages,
Mysore (CIIL) - Our major resource for the database of the dictionary and
also for the training and testing data for our MA.

The root word dictionary was created using the lexical resources mentioned
above. Initially, we used a frequency based list from the CIIL Oriya corpus and
added root words to it from the ‘Taruna Sabdakosha’, to enhance it. Currently
the dictionary contains 10,840 root words, details of which are:

1. Nouns - 5,031
2. Pronouns - 18
3. Adjectives - 930
4. Verbs - 4,537

5. Adverbs - 179
6. Postpositions - 40
7. Conjunctions - 36
8. Clitics - 15

9. Particles - 14
10. Interjections - 40

Tool. We used Lttoolbox [11] package from the Apertium [6] toolkit to develop
the Oriya MA. The Lttoolbox is a well known NLP tool used to build tools like
morphological analyzer and morphological generator. It is a free software and
released under the terms of the GNU General Public License. It uses an XML
based format to represent linguistic data. Paradigms are created inside it using
some of the elements in its morphological dictionary. Further, a morphological
dictionary can be used for both, a morphological analyzer and a morphological
generator, depending on the direction in which it is read by the system.

2.3 Data Development for Oriya Morph Analyzer

Oriya Morphological Dictionary in Lttoolbox. The Oriya morphological
dictionary consists of declension or conjugation patterns of words in XML for-
mat used in Lttoolbox. The dictionary has four sections, of these the two main
sections are paradigm definition section and dictionary section. Alphabet and
symbol definition sections being the other two sections.

Declension or conjugation used, are based on parameters such as, gender,
number, person, case, vibhakti (case marker) for nouns and pronouns. Gender,
number, person, suffix string taken as TAM (tense, aspect and modality) for
verbs. [3]

Oriya Morphological Analyzer Using Lttoolbox 73

SLATE’2015

Classification of Paradigms. Paradigms have been created for the open class
categories like nouns, verbs and adjectives and later on, closed class categories
like postpositions and conjunctions etc. The words that have identical grammat-
ical information make one paradigm class. However, all words with similar end-
ings/suffixes may not follow the same paradigm. For instance, two verbs ‘khaa’
(eat) and ‘gaa’ (sing) fall in the same paradigm as they take similar inflections.
But the verb ‘jaa’ (go) falls in a different paradigm though it has the same end-
ing. This is because the verb ‘jaa’ (go) changes its root form when it takes past
tense inflection e.g. ‘jaa’ (go) becomes ‘gali’ (go+past) but in case of verb ‘gaa’
(sing) becomes ‘gaaili’(sing+past). There are some parts of speech like adverb,
conjunction, postpositions, clitics etc., that remain uninflected, so we have listed
them directly in our dictionary. Currently the morphological dictionary contains
14 paradigms for nouns, 9 paradigms for pronouns, 13 paradigms for adjectives
and 13 paradigms for verbs.

3 Evaluation and Result

We conducted three experiments to evaluate our MA. We discuss this shortly.
Since a MA produces more than one answer, we found it more appropriate to
carry out a more detailed evaluation of the MA than just evaluating the precision
and recall values, since “Precision-Recall gives general overall impression about
the performance of a system” [10]. A more detailed evaluation is necessary to
know what kind of words are over analyzed, which are under analyzed, and so
on. This is discussed in detail, in subsection 3.3 and 3.4.

3.1 Evaluation I

Here we focus on the overall coverage of our MA (Table 1). A corpus of 11,368
words (non-unique) was taken (section 2.2) in order to evaluate the overall cov-
erage of the morph in a random test data environment.

Table 1. Results: The overall coverage.

Total no. of words 11,368
Recognized words 8,303

Unrecognized words 3,065
Coverage 73.03 %

It must be noted that the coverage here is based on a small dictionary size
of 10,840 root words. The class of recognized words includes the cases where the
tool gave an analysis (irrespective whether the analysis was correct, partially
correct or wrong). While the class of unrecognized words comprises those cases
where the morph analyzer didn’t give an output or analysis.

74 Itisree Jena, Himani Chaudhry and Dipti Misra Sharma

SLATE’2015

3.2 Results and Error Analysis

In Table 1 we see that 3065 words remained unrecognized by our MA, which
forms 26.97%. These words can be easily accounted for (table 2 shows the break
up of the unanalyzed words). Out of this 26.97%, out of vocabulary (OOV)
words (which include foreign words, proper nouns and numerals) form 29.81%
and noise (meaningless characters/words occuring in the corpus) takes up 6.62%.
The remaining words fall into causative verbs (2.34%) and ‘others’ (61.20%).
Since causative verbs are currently not being handled, these remain unanalyzed.
‘Others’ in table 2, are Oriya words that remain unanalyzed because they have
yet to be entered in the morphological dictionary. These form a major part of
the unrecognized words.

Therefore, the two major categories that affect the coverage of the MA,
are OOV & noise (36.43%) and ‘Others’ (61.20%) of 3065 unrecognized words.
With a small dictionary size of 10,840 words, the MA’s coverage is 73.03% and
increasing the dictionary size can further improve the coverage.

Table 2. Error Analysis.

S.No Unanalyzed Words Occurrences %

1. Numerals 164 5.35
2. Foreign Words 338 11.02
3. Proper Nouns 412 13.44
4. Causative Verbs 72 2.34
5. Others 1876 61.20
6. Noise 203 6.62

Total 3065 100 %

3.3 Evaluation II

When an MA produces output, it may have 6 possible types:

1. correct output, e.g. ABCD/ABCD.
2. added some wrong output to correct output, e.g. ABCD/ABCDE.
3. missed some correct output, e.g. ABCD/ABC.
4. missed some correct output and add some wrong output, e.g. ABCD/ABCE.
5. all incorrect output, e.g. ABCD/EFG.
6. no output, ABCD/No Output.

These six cases help us to decide which aspect of morphology needs further at-
tention for improvement. To evaluate an MA, a manually created gold-standard
is needed, containing all possible analysis of the words. In the above examples
‘ABCD’ is gold standard data and others are machine’s output. To create the
gold standard data to evaluate our MA we randomly took 1066 words from the
CIIL Oriya corpus. The data was tagged using Sanchay (an open source platform
for working on languages, with components like a text editor with customizable
support for languages and encodings, annotation interfaces, etc.) annotation

Oriya Morphological Analyzer Using Lttoolbox 75

SLATE’2015

interface, in Shakti Standard Format (SSF)(This format is a highly readable
representation for storing language analysis [4]). The Apertium produced mor-
phological analysis was compared with the gold standard data.

We compared the machine produced morphological analysis using our gold
standard data as the reference data. After we ran our MA on the randomly taken
corpus we compared it with the gold standard data. Table 3 shows the results
for type wise evaluation of the accuracy against a gold-standard corpus.

Table 3. Results: Type wise evaluation of the accuracy against a gold-standard corpus.

S.No Types Gold/Output Count % Count

1. type:1 ABCD/ABCD 754 70.73
2. type:2 ABCD/ABCDE 41 3.84
3. type:3 ABCD/ABC 25 2.34
4. type:4 ABCD/ABCE 100 9.38
5. type:5 ABCD/EFG 0 0
6. type:6 ABCD/No Output 146 13.69

Total tokens 1066 100 %

In Table 3, Type:1 gives fully correct output (comprises 70.73% of total
count), whereas Type:2, Type:3 and Type:4 give partially correct output
(comprises 15.56% of the cases). Further, the coverage of the tool is 86.30%.
As mentioned earlier, Type:4 consists of some correct output and some wrong
output (partially correct output), we notice that Type:4-9.38% has the high-
est contribution in cases with partially correct output, as compared to the other
types with partially correct output (Type:2-3.84% and Type:3-2.34%). Type:6
includes cases where MA fails to give the output.

3.4 Evaluation III

In the third evaluation we focused on the accuracy of only two features–‘root’ and
‘category’ instead of all of the features. This is so because for some applications
only these two features are taken into consideration. Other feature structure
values may not be important for them. Thus, through evaluation II the accuracy
of the MA for such applications is also reported. Additionally, for evaluation III
we took the same data sets that were used in evaluation II. Table 4 shows the
results for type wise evaluation of the accuracy for two features.

We see that the percentage count of Type:1 increased to 80.01% in evalua-
tion II, whereas the percentage count of Type:4 decreased to 1.78% (dropped by
7.60%). Thus considering only root and category features shows an overall higher
accuracy of the MA. The coverage remains the same for both the evaluations.

76 Itisree Jena, Himani Chaudhry and Dipti Misra Sharma

SLATE’2015

Table 4. Results: Type wise evaluation of the accuracy for ‘root’ and ‘category’.

S.No Types Gold/Output Count % Count

1. type:1 ABCD/ABCD 853 80.01
2. type:2 ABCD/ABCDE 21 1.96
3. type:3 ABCD/ABC 27 2.53
4. type:4 ABCD/ABCE 19 1.78
5. type:5 ABCD/EFG 0 0
6. type:6 ABCD/No Output 146 13.69

Total tokens 1066 100 %

4 Challenges and Limitations

Foreign Words As seen in 3.2, foreign words remain unrecognized, and thus
unanalyzed in our MA, since they are not part of the data base. Presence of
foreign words in ILs is a widely occurring phenomenon, given a high degree of
code switching in ILs. They cause the coverage of the MA to go down. They
aren’t a part of the Oriya morph dictionary since they are foreign language
words and can’t be included in the ‘Oriya’ dictionary.

A possible solution to handle these would be creating a separate dictionary
for them. However, though a work around for the problem, this is not a very
good option either, as this would call for capturing too many irregularities by
way of the inflections they take (or don’t take). Capturing these irregularities
falls out of the purview of our MA, as this would entail entering all these types
of inflections in the dictionary. Since their taking of inflections is a productive
process, this may make the task more complex, and may also fail generalization.

Analyzing Oriya Compound Verbs Though simple verbs could be handled
by creating paradigms for them, in Lttoolbox with relative ease, handling Oriya
compound verbs (CV) proved quite a challenge for us. Before we go on to discuss
the issues we came across in this, we would like to discuss briefly about CV in
general, and about Oriya CV in particular:

A Compound verb consists of two verbs (v1, v2), yet acts as a single verb.
One of its components is a ‘secondary’ verb which carries inflections like gender,
number, person, tense, aspects and modality and the other, the ‘main’ verb which
carries most of the semantics of the compound, and determines its arguments.
The ‘secondary’ verbs “cannot be said to be predicating fully, though they are
clearly not entirely devoid of semantic predicative power” [5].

Forming compounds is a highly productive process in IL. In languages like
Hindi and Oriya, secondary verbs are generally, a small set that form compounds
with the ‘main’ verbs.

Structure and Behaviour of Oriya Compound Verbs. We have identified
13 ‘secondary’ verbs in Oriya: ‘jaa’ (go), ‘de’ (give), ‘ne’ (take), ‘pakaa’ (throw),

Oriya Morphological Analyzer Using Lttoolbox 77

SLATE’2015

‘bas’ (sit), ‘paar’ (can), ‘aas’ (com), ‘pad’ (fall), ‘uth’ (awake), ‘chaal’ (walk),
‘saar’ (finish), ‘aaN’ (bring) and ‘he’ (happen).

In Oriya CV the stem vowel ‘-i’ attaches to the ‘main’ verb, which in turn is
followed by a ‘secondary verb’ from a limited number of verb roots that occur
as ‘secondary’ verbs. For example:

se so-i-pad-il-aa

he sleep-stemvowel-fall-pst-agr.

‘He fell asleep’

The stem vowel ‘-i’ is different from an aspectual marker, though both have/take
the same form. The difference between them is that the aspectual marker is
followed only by an auxiliary verb while the non-aspectual marker which is a
‘stem vowel’ is followed by a secondary verb [12]. An example for this is:

a. se lekh-i-ch-i b. aame khaa-i-de-l-u

he write-prs-aux-agr. we eat-stemvowel-give-pst-agr.

‘He has written’ ‘we have finished eating’

Also, while in simple verbs inflectional suffixes attach to the main verb root,
in CV the inflectional suffixes attach to the secondary verb, since Oriya is an
agglutinative language, and these two verbs occur together. Thus the two verbs
together arrive at a derived root. And so, we get two roots, a ‘main’ root and a
‘derived’ root.

Thus, since Oriya CV are different from simple verbs, in structure and be-
haviour, we cannot analyze them like simple verbs even though they occur as a
single entity most of the time. Also, since Oriya CV are composed of two verbs
agglutinated together, that arrive at a derived root, the output of our MA should
give this inflectional information for each derived root, in order to capture the
information about their structure and the derivation happening in it.

For example, in ‘khaaidelaa’ (finished eating), the root khaa ‘eat’ is where
we get the information of the action ‘eat’. When the secondary verb attaches
to the main verb, another root ‘khaaide’ is derived. Our morph’s output for the
derived verb ‘khaaidelaa’ should thus be:

^khaaidelaa/root:khaa<droot:khaaide>

<dsuffix:de><cat:v><gen:any>

<num:sg><per:a><tam:ilaa>$

However, this may not be a feasible solution for us, since information pertaining
to such output will have to be incorporated in the dictionary for each CV,
making this a cumbersome task. Besides, since there wouldn’t be any (scope of)
generalization here, this would beat the purpose of using the paradigm approach.

Another solution for this would be the Apertium way–using nested paradigms
to handle derivational forms, since Oriya CV are composed of combinations
of verbs from the set of Oriya (main) verbs. “The use of nested paradigms is
to facilitate the processes of derivation followed by inflection.” [16] Here, the
paradigms of secondary verbs would be ‘called’ upon, from within the main verbs’
paradigms to arrive at their compounds. For instance, the verb ‘khaaideichi’ is

78 Itisree Jena, Himani Chaudhry and Dipti Misra Sharma

SLATE’2015

derived from the main verb ‘khaa’ (eat) and secondary verb ‘de’ (give) to form
a compound. So the paradigm for ‘de’ is called from within the paradigm of the
verb ‘khaa’. Likewise, other secondary verbs would be ‘called’ from within the
paradigm ‘khaa’ to form compounds.

However, not all verbs of a paradigm class take the same secondary verbs
to form compounds. There are verbs that fall under the same paradigms (since
they share same types of inflections) that form compounds with different sets of
secondary verbs. For example, the verbs ‘khaa’ and ‘gaa’ are classified under the
same paradigm class, but they take different secondary verbs. Thus, if we call all
the secondary verbs that go with ‘khaa’, within the paradigm ‘khaa’, then while
processing, the analyzer gives a similar output for ‘gaa’ also, though they don’t
take same secondary verbs. We say ‘gaaiuthilaa’ ‘started singing (suddenly)’
but we don’t say ‘khaaiuthilaa’ ‘started eating suddenly’. It thus leads to some
ungrammatical structures also.

It needs a mention here, that though the nested paradigm approach may
work for a MA, from the perspective of generation it may lead to generation of
ungrammatical structures. Since these two modules are obtained from a single
morphological dictionary (depending on the direction they are read from–left
to right for analyzer and right to left for generator as given by [6], a different
resolution is needed to resolve this. Therefore, based on discussion above we
conclude that using nested paradigms doesn’t seem to be the best option for the
analysis of Oriya CV.

<sdef n="droot:khaaide" c="khaaide"/>

The third, and very simple approach to resolve this issue of handling Oriya
CV in our MA, would be entering the derived roots of the CV in the morpholog-
ical dictionary, in the dictionary section. The morphological dictionary contains
the root or ‘lemma’, its part of speech, which is common for all inflected forms,
that is ‘lemma cut’ and the paradigm name. We add the derived root and the
lemma cut of the derived root in the place where this information is entered in
the dictionary. This would save us the task and the effort of preparing separate
paradigms for the compound verbs. For example, the dictionary entry for the
CV ‘khaaidelaa’ (finished eating) with the derived root ‘khaaide’ would be:

<e lm="khaaide"><i>khaaid</i>

<par n="d/e__v"/></e>

<par> in the entry indicates which paradigm from among the ones defined in the
<pardefs>, the derived root belongs to. Here, the derived root ‘kaaide’ falls under
the paradigm for the root ‘de’, since the CV ‘khaaidelaa’ takes the inflections
of the secondary verb ‘de’. Thus reference to the ‘de’ paradigm through the
element <par> saves us the effort of listing all the inflected forms of the derived
root/lemma in the morphological dictionary entry. The output our MA would
give for the above example is:

^khaaide/khaaide<cat:v>

<gen:any><num:sg>

<per:m_h0><tam:imper>$

Oriya Morphological Analyzer Using Lttoolbox 79

SLATE’2015

5 Conclusion and Future Work

We presented a morphological paradigm based MA for Oriya using Lttoolbox
from the Apertium toolkit. Currently it handles only inflectional morphology,
and nouns, pronouns, adjectives, verbs, compound verbs and indeclinables have
been included in its morphological dictionary. Since the MA is currently in its
preliminary stage, addition of remaining categories and increasing the dictionary
size for existing categories will improve its performance and increase its coverage.
Using the Oriya MA for other NLP tools such as part of speech tagger, chunker,
spell checker, machine translation system for Oriya can also be created in future.
These would be a useful resource for the language.

References

1. Antony, PJ. and Soman, KP.: Computational morphology and natural language
parsing for Indian languages: a literature survey. International Journal of Computer
Science and Engineering Technology, pp. 136–146. (2012)

2. Bapat, M., Gune, H., and Bhattacharyya, P.: A paradigm-based finite state mor-
phological analyzer for marathi. In 23rd International Conference on Computational
Linguistics, pp. 26–34. (2010)

3. Bharati, A., Chaitanya, V., Sangal, R., and Ramakrishnamacharyulu, K.: Natural
Language Processing: A Paninian Perspective. Prentice-Hall of India (1995)

4. Bharati, A., Sangal, R., and Sharma, D.: Ssf: Shakti standard format guide, Tech-
nical report. IIIT Hyderabad (2007) 2007

5. Butt, M.: The light verb jungle. In Workshop on Multi-Verb Constructions (2003)
6. Forcada, M., Bonev, B., Rojas, S., Ortiz, J., Sánchez, G., Mart́ınez, F., Armentano-

Oller, C., Montava, M., and Tyers, F.: Documentation of the open-source shallow-
transfer machine translation platform apertium. (2008)

7. Faridee, A.Z.M. and Tyers, F.M. and others: Development of a morphological anal-
yser for Bengali. Universidad de Alicante. Departamento de Lenguajes y Sistemas
Informáticos (2009)

8. Jena, I., Chaudhury, S., Chaudhry, H., and Sharma, D.: Developing oriya morpho-
logical analyzer using lt-toolbox. Information Systems for Indian Languages, pp.
124–129. (2011)

9. Kar, K.C.: Taruna Sabdakosha. volume-1, Grantha Mandir, Cuttack, Orissa, In-
dia(2000)

10. Kulkarni, A. and Shukla, D.: Sanskrit morphological analyzer: Some issues. In Bh.
K Festschrift volume by LSI (2009)

11. Lttoolbox, http://wiki.apertium.org/wiki/Lttoolbox
12. Mahapatra, B.P.: A Synchronic Grammar of Oriya. Udaya Narayana Singh, Central

Institute of Indian Languages, Mysore, India (2007)
13. Parameshwari, K.: An implementation of apertium morphological analyzer and

generator for tamil. Parsing in Indian Languages, pp. 41. (2011)
14. Sahoo, K.: Oriya nominal forms: a finite state processing. In Conference on Con-

vergent Technologies for Asia-Pacific Region, pp. 730–734. (2003)
15. Shabadi, K.: Finite state morphological processing of oriya verbal forms. In Pro-

ceedings of EACL-2003 Workshop on Computational Linguistics for the Languages
of South Asia: Expanding Synergies with Europe, pp. 49–56. (2003)

16. Vaidya, A. and Sharma, D.: Using paradigms for certain morphological phenomena
in Marathi. In 7th International Conference on NLP (ICON), pp. 132–139. (2009)

80 Itisree Jena, Himani Chaudhry and Dipti Misra Sharma

SLATE’2015

Yet another suite of multilingual NLP tools

Marcos Garcia and Pablo Gamallo

Centro Singular de Investigación en Tecnolox́ıas da Información (CiTIUS)
Universidade de Santiago de Compostela — Galiza (Spain)

marcos.garcia.gonzalez, pablo.gamallo @usc.es

Abstract. This paper presents the current development of a multilin-
gual suite for Natural Language Processing. It consists of a sentence
chunker, a tokenizer, a PoS-tagger, a dictionary-based lemmatizer and
a Named Entity Recognizer (both for enamex and numex expressions).
The architecture of the pipeline and the main resources used for its de-
velopment are described. Besides, the PoS-tagger and the Named Entity
Recognizer are evaluated against several state-of-the-art systems. The
experiments performed in Portuguese and English show that, in spite of
its simplicity, our system competes with some well known tools for NLP.
It is entirely written in Perl and distributed under a GPL license.

Keywords: natural language processing, PoS-tagging, named entity recog-
nition, portuguese, english

1 Introduction

This paper presents CitiusTools, a multilingual suite for Natural Language Pro-
cessing (NLP) which performs the following tasks: sentence chunking, tokeniza-
tion, PoS-tagging, lemmatization and Named Entity Recognition (NER). The
suite is entirely written in Perl and distributed under a GPL license.1

The paper presents the architecture of the pipeline as well as its adaptation
to Portuguese and English (the Spanish version was introduced in [6]). It is
also presented a set of experiments aimed at knowing the performance of the
PoS-tagger and the NE classifier modules. The results show that, in spite of its
simplicity, our system behaves quite well when compared to some state-of-the-art
suites such as Stanford CoreNLP or FreeLing. Besides, it performs notoriously
better than the models provided by other systems such as OpenNLP.

Sect. 2 introduces some related work. Then, the architecture of the system is
presented in Sect. 3. Sect. 4 shows the external resources used for its adaptation
to Portuguese and English, while Sect. 5 contains the performed experiments.
Finally, Sect. 6 describes the main conclusions of this paper.

2 Related Work

In the last years, several open-source NLP suites have been published, being
available to the users. Some of them provide models for languages such as Por-

1 http://proxectos.citius.usc.es/hpcpln/index.php

IV Symposium on Languages Applications and Technologies Pages 81–90
18th and 19th June, Madrid, Spain 978-84-606-8762-7

tuguese and English (evaluated in this paper), while others include analyzers for
other varieties such as Spanish, Chinese, German or Arabic.

Stanford CoreNLP [11] is one of the best known suites, including modules like
tokenizers, PoS-taggers, named entity recognizers, coreference resolution systems
and syntactic parsers. It is written in Java and has been developed mainly for
English, but recently there have been published models for languages such as
Spanish, Chinese, German or Arabic.

FreeLing [12] is a suite of language analyzers (written in C++) which includes
similar modules than the Stanford system, and also has tools for other tasks
such as phonetic encoding. Most of FreeLing modules analyze data in Catalan,
Spanish, Portuguese, English, or French (among others).

Another toolkit for NLP analysis written in Java is OpenNLP,2 which per-
forms most common NLP tasks. There are available models for several language
for this system, including English, Spanish or German.

Finally, IXA pipes [1] (a modular set also written in Java) performs tokeniza-
tion, PoS-tagging, NER and parsing. Among the languages covered by this tool
(depending on the module) are Spanish, English, Basque, Italian or Galician.

The system presented in this paper is, to the best of our knowledge, the first
one written entirely in Perl. It provides a simple, efficient and ready to use set
of NLP tools with a performance close to the state-of-the-art.

3 Architecture

Our system consists of five modules that can be applied in a pipeline in order to
perform NLP tasks. The current version contains the following tools:

3.1 Sentence chunker

This module is composed of a language-dependent list of abbreviations and a
set of Finite State Automata (FST) aimed at identifying sentence boundaries.

The automata detect entities such as urls, e-mail addresses, and other ele-
ments containing dots that are not in sentence-ending position. Also, abbrevia-
tions ending in a dot character (e.g., Dr., corp., etc) are not marked as sentence
boundaries (except if their context is covered by a FST).

The output of this module is the input text with one sentence per line.

3.2 Tokenizer

The next module of the suite splits each identified sentence into its tokens. It is
a rule-based tokenizer enriched with few language-dependent adaptations.

First, the tokenizer identifies compound punctuation (such as ellipsis) and
other punctuation inside numerical expressions. After that, a simple blank-space
tokenizer is applied (which also splits the punctuation which do not belong to
larger expressions).

2 http://opennlp.apache.org/

82 Marcos Garcia and Pablo Gamallo

SLATE’2015

Then, a battery of language-dependent rules is applied in order to split con-
tractions (e.g. don’t > do/not, in English), verb+pronoun forms (e.g., mantém-se
> mantém/se, in Portuguese) and other elements which are useful for further
NLP analysis. Note that some forms can be ambiguous between a contracted and
a non-contracted element: desse, in Portuguese, could be a single token form of
the verb dar (to give), or a contracted form of a preposition and a demonstrative
(de/esse). As the decision for splitting these forms depends on their PoS-tag,
the tokenizer does not split them. Thus, as in other works [8], these forms are
analyzed by the PoS-tagger, which will split them (or not), according to the se-
lected PoS-tag. Those cases where an element of the contraction may represent
two different tokens (with a different PoS-tag, e.g., I’d > I would or I had, in
English) are also splitted in this step, but the lemma will be provided by the
disambiguation of the PoS-tagger.

The output of this module is a vector of tokens representing each previously
identified sentence.

3.3 PoS-tagger

The PoS-tagger assigns a morphosyntactic tag (from a set of predefined tags,
the tagset) to each token.

This module is a bayesian classifier based on bigrams of tokens. It uses addi-
tive smoothing, which is commonly a component of bayesian classifiers. In order
to label a token, the classifier calculates the probability of each tag (ti) linked
to the token, taking into account a set of contextual features Ai. . .An:

P (ti | A1, ...An) = P (ti)

N∏
i=0

P (Ai | ti) (1)

The best set of features, selected in preliminary tests, was the following:

– ti-1: the PoS-tag of the previous token.
– ti+1: the PoS-tag of the next token.
– (ki, ti-1): the cooccurrence of the ambiguous token ki together with the tag

of the previous token.
– (ki, ti+1): the coccurrecence of the ambiguous token ki together with the tag

of the next token.

The model needs to be trained with a labeled corpus and a dictionary with
the possible PoS-tags for each known token. The algorithm disambiguates the
tokens from left to right, so the left context of an ambiguous token is an already
labeled one. Thus, the features concerning the tag of the next token (ti+1) include
the probabilities of the different tags that could be associated with this token.

This strategy is similar to the Hidden Markom Models (HMM) algorithm
proposed in [2]. The main difference is that our system handles the PoS-tagging
as an individual classification problem (token by token), instead of searching for
the best sequence of PoS-tags. Its computational efficiency is the main reason
for the use of this simple approach.

Yet another suite of multilingual NLP tools 83

SLATE’2015

The tagsets of the PoS-taggers follow the EAGLES guidelines [10]. For Por-
tuguese, it has been used a tagset with 193 elements. The English tagset has 27
tags. Both of them have 9 extra tags for punctuation. The difference between
these tagsets come from the complex verbal conjugation and nominal inflection
of Portuguese. However, note that the classifier does not use the 193 elements
in Portuguese: it just uses 21 tags for disambiguating the morphosyntactic cate-
gory (e.g., noun, adjective) of each word. The other information (gender, number,
tense, etc.) is then taken from the labeled dictionary.

The output of the PoS-tagger is the input vector enriched with a morphosyn-
tactic label for each token.

3.4 Named Entity Identifier

The next module of the pipeline is a FST identifier of numex and enamex (named
entities) expressions.

Before starting the identification process, this module takes advantage of
a lemmatized dictionary (see Section 4) in order to assign a lemma for each
token. It also uses the predicted PoS-tag for disambiguating tokens with different
lemmas depending on their morphosyntactic category.

For identifying numex expressions (in our system: dates, currencies, numbers,
measures and quantities), it is applied a set of language-dependent FSTs that
cover the most common forms of representing these elements in each language.

The named entities (enamex expressions) are identified taking into account
both their capitalization and possible functional words inside them (e.g., Banco
de Portugal). In order to better identify the boundaries of the enamex expres-
sions, this module also needs a list of words which can be both common words at
sentence beginning position and the first element of a named entity (e.g., Neves,
which can be a capitalized noun and a proper noun —surname or location—
in Portuguese). These ambiguous forms are obtained semi-automatically using
dictionaries and lists of gazetteers.

The output of this module is the input vector enriched with the identification
of the numex and enamex expressions, as well as with the lemmas provided by
the dictionary.

3.5 Named Entity Classifier

The named entity classifier module assigns each enamex one of the following
labels: person, organization, location or misc (miscellaneous).

In order to classify an entity, this module uses large lists of encyclopedic
gazetteers together with a set of rules for semantic disambiguation.

The gazetteers were automatically extracted from structured resources such
as Freebase3 and DBpedia,4 and enriched with semi-structured knowledge ob-

3 http://www.freebase.com
4 http://www.dbpedia.org

84 Marcos Garcia and Pablo Gamallo

SLATE’2015

tained from the infoboxes and category trees of Wikipedia.5 The gazetteers con-
sist in four lists of entities (one for each semantic category). Besides, the sys-
tem also uses small lists of trigger words, which are nouns that can subclassify
an entity (e.g., “singer” for the class person or “company” for organization).
The trigger words were also automatically extracted from the category trees of
Wikipedia. Finally, a list of the most frequent personal names for each language
(which are not common nouns) is used.

Concerning the disambiguation rules, they are applied using the following
strategy for each named entity:

1. If the entity appears only in one of the gazetteers lists, it is classified with
the class it belongs to.

2. If the entity appears in several lists (or if it does not appear in any), the
context is analyzed. This context includes two windows (before and after)
of three tokens each. If a trigger word is found in the context, the entity is
classified as belonging to the trigger word class (with some restrictions such
as trigger words in preposition phrases. “Caixa Geral” will not be labeled as
person even if the trigger word “president” occurs in the context: president
of Caixa Geral).

3. If the entity starts (or is) a frequent personal name present in the list, it is
classified as person.

4. If the entity is ambiguous (it appears in more than one list or contains trigger
words from different classes) and it cannot be disambiguated by its context,
it is selected the most probable class (prior probability), by computing the
distribution of the gazetteers in the Wikipedia.

5. If the context is not enough to disambiguate the entity, a rule verifies whether
it contains a trigger word or the first token of a gazetteer inside. If there are
more than one option, the gazetteers are preferred over the trigger words,
and in case of ambiguity the prior probability is also computed.

6. If the previous rules cannot classify the entity, it is labeled as misc.

Note that the rules are mainly language-independent. In our case, only one
rule had to be changed when adapting the system for English: a trigger word
inside an entity appears in final position, instead of in the beginning, as in
Portuguese (National Museum versus Museu Nacional).

Even though the performance of this module depends on the quality and
persistence of the gazetteers, the use of contextual features together with the
combination of rules that analyze the internal form of each entity allow the
system to keep reasonable accuracy even in unknown forms.

4 Resources

This section briefly describes the external resources used by the different NLP
modules of our system. Tab. 1 includes a summary of these data.

5 http://www.wikipedia.org

Yet another suite of multilingual NLP tools 85

SLATE’2015

Table 1. Summary of the size of the resources: dictionaries, PoS-tagger training cor-
pora, NER testing corpora and total number of gazetters.

Language Dictionary PoS-tagger (train) NER (test) Gazetteers

Portuguese 1.250M 130k 75k 100k
English 350k 1M 524k 1.5M

4.1 Portuguese

For training the PoS-tagger for Portuguese (and also for extracting some lists
described above), we used the dictionary of FreeLing based on the Label-Lex
lexicon [4]. It consists of ≈ 1.250 million pairs token-tag from about 120k lemmas.

For training the PoS-tagging we used a subset of the CoNLL version of the
Bosque 8.0, with about 130k tokens.6 For testing, we used a different subset of the
Bosque and three small corpora of European Portuguese (EP) news, Brazilian
Portuguese (BP) news and a Wikipedia articles.

For testing the named entity classification, there were used both a subset of
the labeled version of the Bosque (≈ 20k tokens) and the Corpus-Web (with
about 55k tokens of different varieties of Portuguese) [9].

In order to build the gazetteers, the Portuguese version of the Wikipedia was
used for extracting entity names. Apart from that, large lists of countries and
cities were also merged, together with the most common names and surnames
in Portuguese an other lists of gazetteers freely available (such as the FreeLing
data), generating the following lists: 59, 421 person entities, 14, 197 organizations,
34, 590 locations and 838 for misc gazetteers.

4.2 English

For English, the morph english dict.v1.4 was used, with about 350k token-tag
pairs from ≈ 77.5k lemmas.7 For training and testing the PoS-tagger we used
the Brown corpus, with ≈ 1.2 million tokens:8 ≈ 1 million tokens were randomly
selected for training, while the tests were carried out with the other 200k tokens.
Both the dictionary and the corpora had to be adapted and converted to the
same tagset.

The classification of named entities was evaluated using two corpora: the
IEER,9 with 68, 402 tokens and classification of person, location and organization
entities (not misc), and the SemCor Corpus,10 with a size of 455, 597 tokens and
annotation of the four enamex classes. The PoS-tags of this last corpus had been
predicted (not manually revised).

6 http://www.linguateca.pt/floresta/CoNLL-X/
7 ftp://ftp.cis.upenn.edu/pub/xtag/morph-1.5/morph-1.5.tar.gz.
8 http://clu.uni.no/icame/brown/bcm.html
9 http://www.itl.nist.gov/iad/894.01/tests/ie-er/er_99/er_99.htm

10 http://www.gabormelli.com/RKB/SemCor_Corpus

86 Marcos Garcia and Pablo Gamallo

SLATE’2015

The English gazetteers were extracted from Freebase and DBpedia, enriched
with lists of countries and capitals and the most common names and surnames
in this language. The final versions had the following size: 922, 767 for person,
126, 334 for organization, 351, 151 for location and 94, 525 for misc.

5 Evaluation

This section describes the evaluation experiments performed on the two main
modules of the system: the PoS-tagger (CitiusTagger) and the NE classifier
(CitiusNEC). The experiments were carried out in Portuguese and English, us-
ing three NLP suites for comparison: FreeLing (for Portuguese), and Apache
OpenNLP and Stanford CoreNLP (for English).11

It is important to note that some results are not strictly comparable, since
we used the models provided by each software. On the one hand, these models
were trained with different resources (corpora, lexicons, gazetteers. . .), having
also different tagsets (quickly adapted for doing the experiments). On the other
hand, the alignment between the gold-standard and the test files also involved
variation on the results (as it is shown below).

So, the objective of this evaluation is not to know what is the best system for
PoS-tagging and NE classifying texts in Portuguese and English, but to have a
decent comparison of our system analyzing the same data as other NLP suites.

5.1 PoS-tagger

The first set of experiments compared the performance of the PoS-tagger in
Portuguese and English.

Table 2. PoS-tagging results (precision) for Portuguese.

Corpus Size CitiusTagger FreeLing

Bosque 80,881 96.07 96.62
EP News 13,964 96.70 97.76
BP News 11,476 95.73 96.99
Wikipedia 17,149 95.76 96.13
Macro-average — 96.06 96.88
Micro-average — 96.06 96.72

Tab. 2 contains the results for Portuguese. Our bayesian PoS-tagger were
compared to the HMM model of FreeLing [12, 8], analyzing the four mentioned
corpora (see Section 4). The results include the precision (true positives / true

11 The output of each system as well as the gold-standard files can be obtained in the
following url: http://gramatica.usc.es/~marcos/slate15.zip.

Yet another suite of multilingual NLP tools 87

SLATE’2015

positives + false negatives) on each corpora as well as the macro and micro-
average values (macro-average is the harmonic mean of the results from each
corpus while micro-average values are computed from the sum of all the true
and false positives and negatives from each corpora).

When compared to the HMM model, our system behaves quite similar in
every corpora (with a maximum difference of -1.2 in BP News), with average
results of 96% precision. Note that this comparison is strict, since both the gold-
standard and the testing corpora were perfectly aligned. Besides, the tagset of
our system and the FreeLing one were almost identical.

In English, the bayesian PoS-tagger was compared to three different models
(in one corpus): the maximum entropy and perceptron classifiers of OpenNLP
(1 and 2, respectively) and the Stanford POS Tagger (maximum entropy) [13].

The output of the external systems (OpenNLP and Stanford) were automat-
ically converted to the same tagset of the gold-standard.

Table 3. PoS-tagging results (precision) for English. OpenNLP 1 is a maximum en-
tropy model, while OpenNLP 2 is a perceptron classifier. Test corpus has a size of
209, 406 tokens.

CitiusTagger OpenNLP 1 OpenNLP 2 Stanford

93.55 91.72 90.93 91.12

The results (Tab. 3) show that our PoS-tagger behaves as good as the max-
imum entropy and perceptron models. Actually, the precision of the bayesian
model is almost 2% higher, but the evaluation cannot be strict: some minority
tags (e.g. FW for foreign words) appeared in the gold-standard but not in the
tagsets of these taggers (and vice versa).

However, these experiments (together with the Portuguese ones) suggest that
the bayesian model achieves a high performance despite its simplicity.

5.2 Named Entity Classifier

Concerning NE classification, the Portuguese system was also compared to the
FreeLing AdaBoost classifier [3, 7] in two corpora: Bosque and Corpus-Web.

Tab. 4 shows the results of these two classifiers in the referred corpora. In
Bosque, our system achieved slightly better results than the AdaBoost classifier,
while in Corpus-Web, the FreeLing module had better results.

Again, the average results show that a simple system (based on resources
and rules) has similar performance than a supervised classifier.

In English, the resource-based method was compared to the OpenNLP (Name
Finder models)12 and to the Stanford NER (CRF with distributional similarity
features in an IOB2 classifier)13 [5].

12 http://opennlp.sourceforge.net/models/english/namefind/
13 http://nlp.stanford.edu/software/conll.distsim.iob2.crf.ser.gz

88 Marcos Garcia and Pablo Gamallo

SLATE’2015

Table 4. Named entity classification results (f-score) for Portuguese. NEs refers to the
number of full enamex entities (not tokens) in each corpus.

Corpus Tokens NEs CitiusNEC FreeLing

Bosque 19,579 1,027 90.07 88,89
Corpus-Web 55,305 3,666 73.76 75.31
Micro-average — — 81.92 82.10
Macro-average — — 77.33 78.22

Table 5. Named entity classification results (f-score) for English.

Corpus Tokens NEs CitiusNEC OpenNLP Stanford

IEER 68,402 3,384 75.95 52.77 75.86
SemCor 455,597 9,696 58.81 44.85 65.57
Macro-average — — 63.38 48.90 70.72
Micro-average — — 63.23 47.10 68.63

The output of these systems were automatically converted to the CoNLL
IOB format (used in both versions of the IEER and SemCor corpora).

The results of the named entity classifiers (Tab. 5) show that in the IEER
corpus, our system behaves as good as the Stanford model, while in SemCor,
the former increased our performance in more than 7%. In average, our resource-
based classifier had much better performance (≈ 5%) than the OpenNLP system,
while the Stanford one increased our results in 5% − 7% f-score.

Finally, it was carried out a test aimed at knowing the processing speed of
the evaluated systems. They were used for labelling a Spanish corpus of 100,000
tokens (in an Intel Core2 2.5GHz processor with 4gb of RAM running Debian
Jessie). The systems needed the following time for applying the pipeline (sen-
tence chunker, tokenizer, PoS-tagger and NER): OpenNLP (only NER): 1m48s;
FreeLing: 2m27s; CitiusTools: 2m38s and Stanford CoreNLP: 11m25s.

In sum, the evaluations performed with the two main modules of our pipeline
—CitiusTagger and CitiusNEC— suggest that they achieve very good results
(some of them comparable to state-of-the-art systems) despite their simplicity
and their quick adaptation to Portuguese and English. This is in accordance
with the results obtained for Spanish, such as it was described in [6].

6 Conclusions and Further Work

This paper presented the current version of CitiusTools, a multilingual suite for
NLP which includes modules for the most common tasks of this field.

The modules, written in Perl, combine some rule-based and supervised mod-
els which take advantage of external resources such as lexicons, labeled corpora
or large lists of gazetteers.

Yet another suite of multilingual NLP tools 89

SLATE’2015

Two different modules (PoS-tagger and NER) were evaluated in Portuguese
and English, compared to some of the best NLP tools available for these lan-
guages. The results showed that the performance of our system is similar than
the state-of-the-art, even if it has been quickly adapted to these languages.

In current work, we are adapting all the modules in the suite to two new
languages (Galician and French), and we expect to include (in further work) a
deterministic module for coreference resolution.

References

1. Agerri, R., Bermudez, J., Rigau, G.: IXA pipeline: Efficient and Ready to Use Mul-
tilingual NLP tools. In Proceedings of the 9th Language Resources and Evaluation
Conference (LREC 2014), Reykjavik (2014).

2. Brants, T.: TnT – A Statistical Part-of-Speech Tagger. In Proceedings of the 6th
Conference on Applied Natural Language Processing (ANLP). Association for Com-
putational Linguistics (2000).

3. Carreras, X., Màrquez, Ll., Padró, Ll.: A Simple Named Entity Extractor using
AdaBoost. In Proceedings of the Conference on Natural Language Learning (CoNLL
2003) Shared Task. Edmonton (2003).

4. Eleutério, S., Ranchhod, E., Mota, C., Carvalho, P.: Dicionários Electrónicos do
Português. Caracteŕısticas e Aplicações. In Actas del VIII Simposio Internacional
de Comunicación Social, pp. 636–642, Santiago de Cuba (2003).

5. Finkel, J., Grenager, T., Manning, C.: Incorporating Non-local Information into
Information Extraction Systems by Gibbs Sampling. In Proceedings of the 43nd
Annual Meeting of the Association for Computational Linguistics (ACL 2005), pp.
363-370 (2005).

6. Gamallo, P., Pichel, J.C., Garcia, M., Abúın, J.M., Fernández Pena, T.: Análisis
morfosintáctico y clasificación de entidades nombradas en un entorno Big Data.
Procesamiento del Lenguaje Natural, 53, pp. 17–24 (2014).

7. Garcia, M.: Extracção de Relações Semânticas. Recursos, Ferramentas e Estratégias.
PhD Thesis, University of Santiago de Compostela (2014).

8. Garcia, M., Gamallo, P.: Análise Morfossintáctica para Português Europeu e Galego:
Problemas, Soluções e Avaliação. In LinguaMÁTICA, 2(2), pp. 59–67 (2010).

9. Garcia, M., Gamallo, P.: Multilingual corpora with coreferential annotation of per-
son entities. In Proceedings of the 9th edition of the Language Resources and Eval-
uation Conference (LREC 2014), pp. 3229–3233, Reykjavik (2014).

10. Leach, G., Wilson, A.: Recommendations for the Morphosyntactic Annotation of
Corpora. Techincal Report, EAGLES: Expert Advisory Group on Language Engi-
neering Standard (1996)

11. Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.:
The Stanford CoreNLP Natural Language Processing Toolkit. In Proceedings of
52nd Annual Meeting of the Association for Computational Linguistics (ACL 2014):
System Demonstrations, pp. 55-60 (2014).

12. Padró, Ll.: Analizadores Multilingües en FreeLing. In LinguaMÁTICA, 3(2), pp.
13–20 (2011).

13. Toutanova, K., Klein, D., Manning, C., Singer, Y.: Feature-Rich Part-of-Speech
Tagging with a Cyclic Dependency Network. In Proceedings of the Human Language
Technology and the North American Chapter of the Association for Computational
Linguistics (HLT-NAACL 2003), pp. 252–259, Edmonton (2003).

90 Marcos Garcia and Pablo Gamallo

SLATE’2015

Odin: A Service for Gamification of
Learning Activities

José Paulo Leal1, José Carlos Paiva2, and Ricardo Queirós3

1 CRACS & INESC-Porto LA, Faculty of Sciences,
University of Porto, Porto, Portugal zp@dcc.fc.up.pt

2 CRACS & INESC-Porto LA, Faculty of Sciences,
University of Porto, Porto, Portugal up201200272@alunos.dcc.fc.up.pt

3 CRACS & INESC-Porto LA & DI/ESEIG/IPP,
Porto, Portugal ricardoqueiros@eseig.ipp.pt

Abstract. Existing gamification services have features that preclude
their use by e-learning tools. Odin is a gamification service that mimics
the API of state-of-the-art services without these limitations. This pa-
per describes Odin, its role in an e-learning system architecture requiring
gamification, and details its implementation. The validation of Odin in-
volved the creation of a small e-learning game, integrated in a Learning
Management System (LMS) using the Learning Tools Interoperability
(LTI) specification.

Keywords: Gamification, E-Learning, Game services, Interoperability

1 Introduction

The use of game concepts and mechanics in non-game contexts is an effective way
to engage users. Gamification is currently a word of order in different domains,
from marketing to e-learning [2]. The massive use of this approach led to the
concept of gamification as a service, provided by major players such as Google
and Microsoft. These services leverage on their large user base to provide support
for game progress mechanics such as points, leaderboards and badges, without
requiring a specific authentication from the client application.

Gamification services are a great advantage to small web and tablet based
applications, in particular to games. The game progress mechanics features pro-
vided by these services are also relevant in e-learning. However, e-learning sys-
tems are typically deployed in environments with a single sign-on managed by
an academic institution. It would be unacceptable to require students to have
an account with a third party such as Google, for instance.

The purpose of the Odin service is to provide a gamification service similar
to the state of the art, without requiring registration of the end users. Its API
is inspired in the Google Play Game Service (GPGS) with minor adjustments
regarding user identification.

The remainder of this paper is organised as follows. Section 2 reviews the state
of the art in game services. Section 3 introduces the Odin service, its design and

IV Symposium on Languages Applications and Technologies Pages 91–100
18th and 19th June, Madrid, Spain 978-84-606-8762-7

implementation. Section 4 describes its evaluation using a small serious game as
case study. Finally, Section 5 summarizes the contributions of this research.

2 Game Services

The video game industry is one of the fastest growing sectors in the worldwide
economy [8]. According to the research company Gartner, global video game sales
will reach $111.1 billion in 2015, due in part to the growth in mobile game play
and the recent release of the new generation of game consoles. In order to increase
engagement and player retention, video games include several common features
such as leaderboards and achievements. The massive use of this approach and
the impressive growth of players led to the concept of gamification as a service,
later materialized in Game Backend as a Service (GBaaS). The approach is
simple. Instead of replicating the implementation of the game features in each
version of the game for various platforms, GBaaS adhere to a service oriented
architecture providing cross-platform game services that lets you easily integrate
popular gaming features such as achievements, leaderboards, remote storage and
real-time multiplayer in mobile games.

While the concept of ”winners and losers” can hinder the motivation of
students [7], gamification is currently being applied with relative success in e-
learning [1, 6]. The integration of game concepts in learning environments helps
students to remain focused and to fulfil their course goals. However, the imple-
mentation of gamification in these domains is often trapped in ad-hoc solutions
or supported by specific platforms (for instance, the badges in Moodle), instead
of using approaches such as those provided by GBaaS.

In the following subsections we briefly summarize the main common game
features that can be applied to the teaching-learning process. Then, we compare
six GBaaS regarding social and technical features. This study is part of an effort
to select an GBaaS on which to base the development of a service for gamification
of learning activities.

2.1 Game concepts

Games are more interesting when players are able to achieve goals and compete
against other players. These features foster retention and competitiveness, and
are applicable also in the gamification of e-learning activities. The following list
enumerates the most common game concepts:

Leaderboards are databases that keep scores. They allow users to post their
scores in a game and compare themselves with other players’ scores. They
measure the success of a player in a game.

Achievements are goals/challenges set in a game that players managed to
accomplish. Achievements give players a motivation to keep playing, to earn
as many as possible, and a way compare themselves with other players. The
fulfilment of a goal may enhance the status of the player or unlock access to
other levels, for instance.

92 José Paulo Leal, José Carlos Paiva and Ricardo Queirós

SLATE’2015

Multiplayer is a play mode that allows several players to simultaneously co-
operate or compete in a game. This feature supports a range of other sub-
features, such as challenges, where players compete each other on either a
score challenge or an achievement challenge, and matchmaking games for
real-time, turn-based, or self-hosted matches.

Saved games allow the remote storage (in the cloud) of game data, for in-
stance, the state and the players progress in the game.

Quests are periodic game challenges that players can complete to earn rewards.
This way, developers can launch periodic challenges to their gaming commu-
nities.

Gifts allow players to send/request game resources or items to/from friends (for
instance, in their Google+ circles).

Matchmaking automatically sets up game matches and finds opponents based
on parameters set by the game developer. Usually only a specific number of
players can be matched at the same time.

2.2 Game Backend Services

A Backend-as-a-service (BaaS) is a cloud computing service model acting as
a middleware component that allows developers to connect their Web and mo-
bile applications to cloud services via application programming interfaces (API)
and software developers’ kits (SDK). BaaS features include cloud storage, push
notifications, server code, user and file management, social networking integra-
tion, location services, and user management as well as many other backend
services. These services have their own API, allowing them to be integrated into
applications in fairly simple way [3].

A Game-Backend-as-a-Service (GBaaS) is a subset of a BaaS that in-
cludes cross-platform solutions for the typical game concepts identified in the
previous subsection. During the development process of a game (or a generic
application) developers must choose between building their own back-end ser-
vices or using an available game back-end platform. This last option is usually
preferred since GBaaS include several services specifically tailored for game de-
velopment. These services allow developers to focus on the game logic by freeing
them from implementing boiler plate features.

The following subsections compare several GBaaS according to their social
and technical features. Given the number of GBaaS found (32) it would be
impracticable to study them all. Therefore, eight GBaaS were chosen: Google
Play Game Services, Yahoo Bakend Game Service, GameUp, Flox, GameSparks,
Fresvii, Kumakore and Photon. These features are summarized in Table 1.

Social game features The studied GBaaS provide developers with social game
services accessed through cross-platform API. These features make the gameplay
more competitive and collaborative, and improve social engagement.

Analysing Table 1 one concludes that almost all GBaaS supports leader-
boards, multiplayer game mode and cloud storage. Other features such quests
and matchmaking are not yet widely supported, probably due to their novelty.

Odin: A Service for Gamification of Learning Activities 93

SLATE’2015

Table 1. Social and Technical game features

Types Features Google Yahoo GameUp GSparks Fresvii Photon

Social

Leaderboards yes no yes yes yes yes
Achievements yes yes yes yes no no
Multiplayer yes yes no yes yes yes
Save Data yes yes yes yes yes yes
Quests yes no no yes no yes
Gifts yes yes no yes no yes
Matchmaking no no yes no yes yes

Technical

Auth G+
Yahoo
Face Face

Face
Twitter Face Face

WS REST - REST REST - REST
Res. format JSON - JSON JSON - JSON

Platforms

Android
iOS
C++

ActionScript
iOS
Android
C#
Unity

Android
iOS
Unity

ActionScript
C++
Cocos2D
JavaScript
Marmalade
Unity

Android
iOS
Unity

Android
.NET
Unity

Technical game features The studied GBaaS offer cloud services through
API and SDK to various platforms. Regarding authentication almost all GBaaS
use the same strategy. Before the game can make any calls to the game services,
it must first establish an asynchronous connection with the backend servers and
authenticate within the game services. Some GBaaS requires that the players
have an account on specific backends (GPGS requires that users have a Google
account). Others, such as GameSparks, provides a simple mechanism that allows
games to implement social login without any additional code, allowing gamers,
for instance, to sign in using a Facebook or Twitter account, and start playing.

The majority of the GBaaS provides a HTTP RESTful API. The format
of the data in all HTTP store operations (PUT and POST) are required to be
valid JSON. All response data from the GBaaS comes back also in JSON format.
Regarding the REST API reference, the authors opinion is that GPGS is the
most complete and better documented API.

In complement to the REST API most GBaaS support also mobiles. There
are examples of SDKs for Android, iOS, and even FirefoxOS (GameUp) mobile
native apps. Game engines are also supported and most GBaaS offer SDKs for
major game engines such as Unity, and also for cross-platform game development
tools such as Marmalade and Cocos2D.

3 Odin

This section describes Odin, a gamification RESTful Web Service to be used
by educational institutions. It provides (1) score submissions, (2) leaderboards
listing, (3) quests for players, (4) awards to players for in-game accomplishments
as well as some minor services to manage institutions, players, leaderboards,
quests and achievements.

94 José Paulo Leal, José Carlos Paiva and Ricardo Queirós

SLATE’2015

Odin is based on a standard gamification API but has a different approach
regarding authentication. Institutions, rather than end-users, are the ones that
require authentication. Once an institution is authenticated, Odin grants it per-
mission to manage scores, quests and achievements in its users.

The next subsections present the architecture of Odin and its main compo-
nents, and describe its data model and service API.

3.1 Architecture

Odin is a RESTful Web Service that allows institutions to consume gamification
resources from their web applications. The web applications initialize sessions
in Odin through authentication built on top of OAuth2 authorization protocol.
Then they requests particular actions to the server identified by a specific URI
and an HTTP method such as POST, GET, PUT or DELETE.

HTTP/REST Client Odin Authorization
Server

Redis
Database

HTTP Request

Redirects to Authorization Server

Authenticate and approve release of token

Starts Authorization Proccess

Send Token

New HTTP Request with Token
Validate authorization

Response (valid or not)

RESP Request to retrieve or modify data

RESP Response
JSON Response

Fig. 1. Sequence diagram representing a common request to Odin

Figure 1 presents a sequence diagram that summarizes the interactions of
Odin with other systems when a request is made by the client. Firstly, the
HTTP request made by the client is subject to a security filter that checks if the
institution is authenticated. If the institution is not authenticated or authorized
to access Odin resources it is redirected to the authorization server where it will
authenticate and approve the release of a token with the authorization proof.
The generated token (with expiration time) is sent to the client and it (client)
presents the access token to Odin.

When the client is authenticated and authorized, it is passed to the JAX-RS
REST interface implemented using Jersey (described in the next subsection) and
forwarded to the mapped resource. From the resource layer it is forwarded to
the service layer, passing through a security layer which intercepts it to check
authorization and roles, ensuring that only authorized institutions have access
to the services.

Odin: A Service for Gamification of Learning Activities 95

SLATE’2015

The service layer responds to the request with the data persisted on Redis
(described in the next subsection) through the Jedis client (using REdis Serial-
ization Protocol) and Ohm library implementation for Java. The response sent to
the client is a JSON object representing the resource type modified or requested
by it (each resource type may have one or more data representations). Whenever
a fresh token is needed, the client can request it from the Authorization Server.

3.2 Frameworks and Tools

Odin uses Jersey, an open-source framework that is the reference implementation
of the Java API for RESTful Web Services, extending it with additional features
and utilities to further simplify RESTful service. Among other features, Jersey
provides a Core Server to build RESTful services based on annotations, support
for JSON and to the Java Architecture for XML Binding, as well as a Core
Client to easily create a client that can communicate with REST services.

Data storage relies upon Redis NoSQL database that provides an open-source
and advanced key-value storage and cache solution. It is an high performance al-
ternative to the traditional Relational Database Management Systems (RDBMS)
[5] to store and access large amount of data. Redis is sometimes described as a
data structure server since keys can contain strings, hashes, lists, sets and sorted
sets. As a NoSQL database it focus on performance and scalability rather than in
guaranteeing the atomicity, consistency, isolation and durability (ACID) prop-
erties. Redis was selected for backend due to its hability to store large amounts
of non critical data very efficiently.

In order to integrate Redis in Odin the data layer resorts to the Jedis client,
as well as of an object-hash mapping library, named JOhm, to store and re-
trieve objects from Redis with a higher level of abstraction and thus simplicity.
JOhm is the Java implementation of the well-known Ohm library and aims to
be minimally-invasive, relying only on reflection aided by annotation hooks for
persistence.

3.3 Data Model

The data model of Odin consists of seven main entities: institution, player,
leaderboard, score, quest, achievement and session, related as denoted in the
UML class diagram of figure 2.

An institution is the entity that manages games and all related data, and so
it is the one which needs authentication and/or authorization. Thus, it needs to
store an id and password to authenticate, and also a token to check the validity
of the session. Whenever an institution authenticates a session is created and
linked to it (through the institutionId). This session contains the creation time,
last access time and a state indicator (active or inactive).

The institution needs to represent its students. As this is a gamification
model they are abstracted to players, and so they will have a playerId that
identifies him to the institution, a displayName that is the name to show on the

96 José Paulo Leal, José Carlos Paiva and Ricardo Queirós

SLATE’2015

Achievement

+ achievementId : String
+ currentSteps : int
+ achievementState : String
+ lastUpdatedTimestamp : long
+ experiencePoints : long

Score

+ player : Player
+ leaderboard : Leaderboard
+ scoreValue : float
+ rank : Object
+ timeSpan : timeSpan
+ writeTimestamp : long
+ scoreTag : String

Institution

+ institutionId : String
+ name : String
+ password : String
+ token : String

Player

+ playerId : String
+ displayName : String
+ avatarImageUrl : String
+ name : Object
+ experienceInfo : Object
+ title : String

Leaderboard

+ leaderboardId : String
+ name : String
+ order : String
+ currentVersion : int
+ playerLevels : Object[]

Session

+ institutionId : String
+ sessionId : String
+ createTime : Date
+ lastAccessedTime : Date
+ active : boolean

Quest

+ questId : String
+ name : String
+ description : String
+ state : String
+ start : Date
+ end : Date

Fig. 2. Class diagram of the data model of Odin

leaderboard, a full name and a representation of his experience info with level,
points acquired and needed points to level up.

As the player progresses in the game, (s)he will possibly win achievements.
An achievement has a number of required steps and a state (hidden, revealed
or unlocked). When a player reveals one, he receives the number of experience
points associated.

A player can also accept and fulfill quests. A quest is characterized by a name,
a description, a state (upcoming, open, accepted, completed, failed, expired or
deleted) and a start and end date.

One of the most important parts of this model is the leaderboard. It contains
more than a list of sorted scores, it contains data related to a game, such as a list
of info on the levels available in the game/leaderboard. These parts are joined
since it is required a single leaderboard to each game, and they depend on the
existence of each other.

Scores related to a leaderboard and a player, are also stored. Each score has
a floating point value, a timespan (daily, weekly or all time score), a timestamp
and a rank (its position on the leaderboard).

3.4 Service API

The integration of Odin with other systems relies on REST calls to set and re-
trieve data. It follows the Google Web API Reference for achievements, leader-
boards, players, quests and scores resources. The only differences are that all
these resources URI paths are relative to gamify/institutions/institutionId.
Also when an authenticated player is referenced in a function, it is replaced
by a sub-path of the form /players/playerId right after institutionId in the
resource path URI.

Odin: A Service for Gamification of Learning Activities 97

SLATE’2015

The institution resource is added to the set of resources. It contains the
functions shown in table 2.

Table 2. Intitutions resource API reference. URIs are relative to /gamify

Function HTTP request

insert POST /institutions
get GET /institutions/institutionId

The insert function inserts the institution given in the request body. The get

function retrieves the institution resource given its id.

4 Evaluation

For validation of the gamification service described in the previous section, a
simple multiplication game was created. This game – MathGamify – can be used
by primary school children to learn multiplication tables. MathGamify generates
two random numbers. The first number between 1 and the current game level
and the second number between 1 and 10. Then the student/player has the
opportunity to answer the multiplication value of the two numbers. The score is
accumulated in the ratio of the player’s level until player misses, in which case
the score is reset to zero.

MathGamify acts as a tool provider to a Learning Management System
(LMS). The integration of MathGamify with the LMS relies on the Learning
Tools Interoperability (LTI) specification. When the LMS launches MathGam-
ify the LTI parameters are sent as part of the HTTP POST request. On request
reception MathGamify uses the LTI Wrapper [4] package to process LTI com-
munication and extract user id, name and level. The last is a custom parameter
defined on the external tool configuration of the LMS.

MathGamify consumes two types of resources from Odin: score submission
and listing of scores. Once the player answers a question, MathGamify commu-
nicates the score to Odin, using Jersey Client to issue the REST call, and the
grade to the LMS using LTI. This grade is a value between 0 and 1, calculated
by the following way: if there is a custom parameter custom max score then it
is the score divided by custom max score, otherwise it is the number of correct
answers divided by the total number of tries. When MathGamify initializes its
GUI, and every time a score is submitted, the score listing is updated with the
data returned from Odin.

One of the key components is the LTI Wrapper that implements both sides
of the LTI communication. This component receives LTI requests from LMS and
issues LTI requests to LMS.

The GUI component of MathGamify was developed using Google Web Toolkit
(GWT), an open source Java software development framework that allows a fast
development of AJAX applications in Java. The GWT code is organised in two

98 José Paulo Leal, José Carlos Paiva and Ricardo Queirós

SLATE’2015

main packages, the server and the client. The server package includes all the ser-
vice implementations triggered by the user interface. These implementations are
responsible of (1) the logic of the game, (2) communication with Odin and (3)
communication with LMS through LTI wrapper. The selected LMS was Moodle
2.8 .

The implementation of MathGamify demonstrates the efficacy of the pro-
posed approach in coping with the extra requirements of a serious game inte-
grated in a typical e-learning ecosystem, where authentication is provided by an
LMS. To complement its validation, Odin was also tested regarding its efficiency.

The latency of the Odin service was tested in two of its functions: (1) submit
a single score and (2) list all scores in a leaderboard. Each test consisted of 1000
samples of calls to the same function, and all numbers stated below are averages
per sample.

Initially the tests were run locally on the same machine as the Odin server,
using Grizzly Test Container provided by Jersey, so it had no network latency.
The average time to (2) was around 40 ms (leaderboard had 6 scores when the
test was running). In the worst case it took 461 ms. The test (1) spent an average
time of 22 ms and the worst case took 385 ms.

The same tests were repeated on an external server. During these tests an
average network latency of 23 ms was observed. In this setting test (1) consumed
an average time of 67 ms. The average time to (2) was 587 ms (the leaderboard
had 1000 scores).

The tool used to measure time spent was ContiPerf, a lightweight testing
utility that allows the user to easily turn JUnit 4 test cases to performance
tests. It is base on annotations as the JUnit 4’s test configuration.

5 Conclusions

Game concepts and mechanics are an useful way to engage students in e-learning
activities. These kind of features are already provided by game backend services
that can leverage on their authentication services and massive user base. How-
ever, gamification services that rely on external authentication are not adequate
for e-learning systems that already operate on a single sign-on ecosystem.

Odin is a gamification service developed for requirements of e-learning sys-
tems. It was designed to authenticate clients rather than end-users and thus
can be integrated with the e-learning systems typically found in educational
institutions.

The MathGamify system is a proof of concept, that illustrates how serious
games acting as tool providers for an LMS interact with the services of Odin.
The authors plan to integrate Odin in a learning environment for solving pro-
gramming exercises.

Odin itself will be subject to improvements. The current version provides web
services for exposing the gamification service to clients. The next version will
provide also a web interface to register institutions and allow them to manage
their resources.

Odin: A Service for Gamification of Learning Activities 99

SLATE’2015

Acknowledgments. Project ”NORTE-07-0124-FEDER-000059” is financed by

the North Portugal Regional Operational Programme (ON.2 O Novo Norte), under

the National Strategic Reference Framework (NSRF), through the European Regional

Development Fund (ERDF), and by national funds, through the Portuguese funding

agency, Fundação para a Ciência e a Tecnologia (FCT).

References

1. Burguillo, J.C.: Using game theory and competition-based learning to stimulate
student motivation and performance. Comput. Educ. 55(2), 566–575 (Sep 2010),
http://dx.doi.org/10.1016/j.compedu.2010.02.018

2. Hamari, J., Koivisto, J., Sarsa, H.: Does gamification work?–a literature review of
empirical studies on gamification. In: System Sciences (HICSS), 2014 47th Hawaii
International Conference on. pp. 3025–3034. IEEE (2014)

3. Janssen, C.: Backend-as-a-service (baas)”. Tech. rep., Techopedia,
http://www.techopedia.com/definition/29428/backend-as-a-service-baas (2014)

4. Queirós, R., Leal, J.P., Campos, J.: Sequencing educational resources with seqins.
Computer Science and Information Systems 11(4), 1479–1497 (2014)

5. Seeger, M., Ultra-Large-Sites, S.: Key-value stores: a practical overview. Computer
Science and Media, Stuttgart (2009)

6. Siddiqui, A., Khan, M., Akhtar, S.: Supply chain simulator: A scenario-based educa-
tional tool to enhance student learning. Comput. Educ. 51(1), 252–261 (Aug 2008),
http://dx.doi.org/10.1016/j.compedu.2007.05.008

7. Vansteenkiste, M., Deci, E.L.: Competitively contingent rewards and intrinsic moti-
vation: Can losers remain motivated? Motivation and Emotion 27, 273–299 (2003),
http://dx.doi.org/10.1023/A:1026259005264, 10.1023/A:1026259005264

8. Zackariasson, P., Wilson, T.: The Video Game Industry: Formation, Present State,
and Future. Taylor & Francis (2012), http://books.google.pt/books?id=lgiQNdc-
DOwC

100 José Paulo Leal, José Carlos Paiva and Ricardo Queirós

SLATE’2015

SplineAPI: A REST API for NLP services

Nuno Vieira, Alberto Simões, and Nuno Ramos Carvalho

Centro Algoritmi — Universidade do Minho — Portugal
nunovieira220@gmail.com, ambs@ilch.uminho.pt, narcarvalho@di.uminho.pt

Abstract. Modern applications often use Natural Language Processing
(NLP) techniques and algorithms to provide sets of rich features. Re-
searchers, who come up with these algorithms, often implement them for
case studies, evaluation or as proof of concepts. These implementations
are, in most cases, freely available for download and use.

Nevertheless, these implementations do not comprise final software pack-
ages, with extensive installation instructions and detailed usage guides.
Most lack a proper installation mechanism and library dependency track-
ing. The programming interfaces are, usually, limited to their usage
through command line, or with just a few programming languages sup-
port.

To overcome these shortcomings, this work aims to develop a new web
platform to make available a set of common operations to third party
applications that can be used to quickly access NLP based processes.
Of course this platform still relies on the same tools mentioned before,
as a base support to specific requests. Nevertheless, the end user will
not need to install and learn their specific Application Programming
Interfaces (API). For this to be possible, the architectural solution is to
implement a RESTful API that hides all the tool details in a simple API
that is common or, at least, coherent, across the different tools.

Keywords: Natural Language Processing, REST API, web service, DSL

1 Introduction

Natural Language Processing (NLP) techniques are being used in very dif-
ferent types of applications.

Some companies are mining social communities to find out what their cus-
tomers think about their products or services [3]. Others are making their infor-
mation available in different languages by using machine translation techniques
[9]. Newspapers and other news agencies, are using NLP techniques to summarise
news and cluster them by specific areas, or based on their similarities [5].

Any one of these applications require a stack of NLP tools to work. This stack
can be very different from tool to tool, but might include common tasks like:
language identification, text segmentation, sentence tokenization, part of speech
tagging, dependency parsing, probabilistic translation, dictionaries querying, or
named entity detection, just to mention some [6].

IV Symposium on Languages Applications and Technologies Pages 101–110
18th and 19th June, Madrid, Spain 978-84-606-8762-7

Although there are some NLP toolkits that include a good number of tools
for most of these tasks [4, 1], developers are likely to need other tools that are
not directly available. This leads to the installation of different tools. If the
developers need to support a wide range of languages, this list of tools is prone
to grow, as some tools are not language independent or because they do not
include training data for some of the required languages.

These requirements lead to the need of installing a variety of tools to have a
complete NLP stack. Unfortunately, most of these installations are not as simple
as they should be, as most of their developers are more interested in using the
tools and adding new features than to document their usage and installation,
or to provide good installation procedures. This leads to the need of dealing
with different kinds of installation problems, and to learn each tool application
programming interface (API).

Although our NLP team is small, we have been dealing with this problem for
some time, and therefore, we are proposing a tool and a service to hide all these
details from the end-user, making these libraries available as web services based
in the REST philosophy. Of course that, if the web services are, themselves, using
those same tools, someone will need to deal with the installation procedure, and
will need to learn its usage. But if this process could be done only once, and the
installed tools are available as a simple web service, application development is
faster, and application deployment gets easier.

As a side benefit, having a different server running some tools, helps in dis-
tribution. Even if at the moment we have the system working on a single server,
it is simple to distribute the tools between different machines.

Nevertheless, the process of making these tools available through a web ser-
vice is not straightforward, as one needs to deal with timely processes, that can
not be served easily using a single HTTP request, given timeouts; problems on
service abuse; problems on load distribution, and others.

In this paper we present SplineAPI, that is both a service, that we are making
available for free, and a platform, for anyone to replicate this kind of service in
their own servers. Section 2 will compare our proposal with other services already
available on the Web. Section 3 includes a presentation of our design goals as
well as the SplineAPI architecture and implementation. Section 4 concludes with
future work.

2 Related Work

The idea to make APIs available through web services is not new. There are
several platforms that make NLP processes available online, each with its own
characteristics and targeting different kinds of users. They range from simple
tools that allow a single kind of task to be performed, to fully featured sites
with a diverse set of functionalities.

In this section we compare our main goals with some of the tools already
available. We focused mainly on tools that have more similarities with our ap-
proach. Therefore, we are looking mainly to tools that include more than one

102 Nuno Vieira, Alberto Simões and Nuno Ramos Carvalho

SLATE’2015

kind of task and targeting more than one type of user. Then, we looked up their
popularity.

The main differences from the analysed platforms and our main goals are:

– some of the platforms are not NLP specific, like Mashape. They just work
like a proxy that hides some of the web-services requirements (like user au-
thentication and quota management). Nevertheless, there is no information
about how the real service is implemented, and if its architecture is generic
enough to be configured for other requirements;

– other platforms, like Text-Processing, although allow different types of ser-
vices, all of them are based on one single tool (in this case, NLTK). Again,
no information is given on the system implementation and how it can be
adapted to other tools, and in specific, for functionalities not available in
NLTK.

– and finally, mono-application services. Some are available together in a sim-
ilar place, like CORE API by TextAlytics but there is no integration or
homogeneity between the different offered services.

During the development of SplineAPI our main goal is to have an extensive
system, to be used by anyone interested in offering Web Services, that can be
easily configured and monitored.

3 Design Goals and Architecture Details

The main goal is to create a solution that minimizes the challenges develop-
ers face, when trying to take advantage from a large set of NLP tools already
available.

In today’s connected world, applications are no longer running only on the
client machine. Also, they are no longer running only server-side. They are dis-
tributed, both on the client machine, server machine and others that might help
in the process.

Therefore, our goal is to help the conversion of NLP tools into web services.
Although the tool installation may be a challenge, the administrator of these
services needs to deal with it, we intend to make the API construction easy,
recurring to a set of Domain Specific Languages (DSL).

With the idea of creating a web API, it was necessary to think what is the
best implementable architecture to develop this idea. The easiest and the cleanest
method, to make available all the NLP tools, is to build a web service. Inside
the web service world, there are various options of architectures, depending on
how do we want to provide the service. The most popular are: Simple Object
Access Protocol (SOAP) and Representational State Transfer (REST), each one
with its own advantages and disadvantages depending on the objective in mind.
When it comes to SplineAPI, the obvious choice was REST [2, 8].

REST is more and more popular, and the best benefit it offers, is the opti-
mization for stateless interactions that, in this case, is an essential feature, be-
cause the platform handles specific requests and responses based on text data,

SplineAPI: Building a REST API for NLP services 103

SLATE’2015

and that, does not require a connection status. To the users, REST is the sim-
plest way to query a service because it is less verbose and easy to understand,
as it bases its interaction with the clients in well known HTTP commands.

With the platforms’ architecture decided, it was then fundamental to inves-
tigate the best way of developing all the connections between the tools and the
service, and the software technologies needed to make everything work.

3.1 Spline Architecture

Figure 1 shows our solution architecture. The server is composed of three
main components: the Spline REST server, the NLP tools and their interface
definitions, and a quota database.

NLP
Tool

Tool
Definition

File

Quota

Spline
REST
Server

Internet

Client

Client

Client

Client

Fig. 1. Spline architecture.

NLP Tools and Definition Files Different NLP tools communicate in dif-
ferent ways with the user. Some tools are command line applications that read
information from a file, or from the standard input, and produce results in an-
other file, or into the standard output. Some other are library-based, meaning
that they expose an API that can be used in order to process information and
obtain a desired output.

In order to be able to tackle with these different aspects of tools, each tool
interface is described in an XML file.

This XML file is processed and a Perl module is created. This Perl module
is responsible for the interaction with the Spline REST server, as is detailed in
Section 3.2.

104 Nuno Vieira, Alberto Simões and Nuno Ramos Carvalho

SLATE’2015

Listing 1.1. XML example for the Tokenization Service based on FreeLing Perl library.

<s e r v i c e>
<meta>

<t o o l>FreeLing</ t oo l>
<name>Tokenizer</name>
<route>t ok en i z e r</ route>
<parameters>

<parameter r equ i r ed=”1” name=” text ”>
<de s c r i p t i o n>The text to be token ized</ d e s c r i p t i o n>

</parameter>
</parameters>
<d e f i n i t i o n>

Process o f breaking a stream of text up in to tokens .
</ d e f i n i t i o n>
<co s t>1</ cos t>

</meta>
<implementation>

<packages>
<package>FL3 ’ pt ’</package>

</packages>
<main lang=” pe r l ”>

my $ pt tok = Lingua : :FreeL ing3 : :Token i z e r−>new(”pt”) ;
my $ tokens = $pt tok−>token i z e ($ text , t o t e x t => 1) ;
r e turn $ tokens ;

</main>
</ implementation
<t e s t s>

<t e s t>
<param name=” text ”>I w i l l be token ized .</param>
<code>

ok ($ r e su l t −>[0] eq ’ I ’ , ”Test the f i r s t word”) ;
</code>
<code>

ok ((s c a l a r @{$ r e s u l t }) == 5 , ”Test the r e s u l t l ength ”) ;
</code>

</ t e s t>
</ t e s t s>

</ s e r v i c e>

The XML structure follows a XML Schema that allows the validation of the
XML file. It also defines the domain of specific elements and attributes, which
allow easy verification on the XML semantics.

Listing 1.1 presents an example of an XML definition file. It describes the
interface for a tokenization service based on FreeLing [7] library.

The XML file is composed by three main parts:

– The meta-data for the service includes its name, the back-end tool and the
service route (basically, the path used for the service URL). It also includes
a brief explanation of the service goals, the service usage cost (if applicable)
as well as which parameters should be used in order to request an operation.
Each parameter is described in terms of its name, requiredness and default
values. It also includes a brief explanation of each parameter meaning.
When adding new services we are aware that further options will be needed.
Namely, some services might work by uploading some text files, and in those
case, a special parameter type will be needed to differentiate file parameters
from standard text ones.

SplineAPI: Building a REST API for NLP services 105

SLATE’2015

– A description of how the parameters supplied by the users will be used
to compute a result. At the moment this is done using Perl code or Bash
commands. In the first case, there are two sections, one describing the Perl
packages that need to be loaded, and another with the code that is executed.
For Bash commands, only the executed code section should be used.

Again, we are aware that for different tools our generator will have different
needs, and therefore this section of the XML definition file might need further
options in the future.

– Finally, the file includes a set of tests that allow the service programmer or
the server administrator to test if all services are working properly. These
tests include an input for the service and a set of assertions over the obtained
output. Again, at the moment these tests are being written directly in Perl,
but we have been working into incorporate a JSON querying language like
JsonPath1 or JSONiq2.

The structure of the Perl module generated from these XML definition files
is presented later, in Section 3.2.

Quota database Although our service is designed to be stateless, meaning
that the service is connection-oriented, we want to record information on service
usage, in order to track users, most used services, and if possible, distribute
different services by different servers, so that highly used services are hosted in
different hardware.

In one hand, each service defines how much a request to it costs. This cost can
be a constant or defined accordingly with the amount of data to be processed.
On the other hand, each client has an amount of quota to be used based on a
cost limit. this quota can differ accordingly with the status of the client or, who
knows, accordingly with a paid plan. Of course there is also the possibility to
turn off quota management completely.

For this to be possible it was created a coin strategy. Each user has a daily
limited amount of coins he can use freely. All the functionalities are different in
their processing time but have a text-based parameter that can be small or big
and, based on that, we stipulated a whole panoply of cost indicators that differ
with the length of the text and the functionality itself. For that to happen, it
was obviously fundamental to create a stateless authentication process to identify
and manage all the users and their requests.

Spline REST server Considering that Perl is a programming language ade-
quate to process textual data, with a great set of interfaces to other programming
languages, it was the chosen language for the back-end server implementation.

1 A XPath like language for JSON, available from: http://goessner.net/articles/
JsonPath/ (Last visited: 15-04-2015).

2 A very complete and expresssive query language for JSON, available from: http:
//www.jsoniq.org/ (Last visited: 15-04-2015).

106 Nuno Vieira, Alberto Simões and Nuno Ramos Carvalho

SLATE’2015

The server is implemented in Perl, using the Dancer2 Web Framework [10].
The interaction with the NLP tools is done using Perl modules generated auto-
matically from the already mentioned XML Definition Files. These modules are
loaded automatically by the server, making all services available.

The server is responsible for querying the quota database and update it
accordingly with the user requests. When called using the standard HTTP pro-
tocol, it presents common web pages documenting the services that are available
(accordingly with the loaded modules) and their interfaces.

This strategy allows the easy creation of new services, just by creating an
XML definition file, converting it into a Perl Module (and in some cases, some
edition of the generated module) and restarting the web server. The new module
will be loaded and its description and documentation will be made available in
the website automatically.

3.2 Perl Module Generation

As already mentioned, the XML definition file is processed and “compiled”
into a Perl module. The Perl module includes information about the service itself
(namely, the meta section of the XML definition file) and a set of methods that
are used both for configuring the service, and to perform the required operations
to provide the service.

The module generation is template based. The meta-information is converted
into an associative array (hash, in Perl terminology), and the Perl code is em-
bedded in a subroutine.

The generated Perl module can be edited manually, to perform any special
tweaks or improvements that might be necessary.

Listing 1.2 shows the relevant portions of the generated Perl module. Each
module should implement a programming interface (called Roles, in Perl world),
making available functions to access some of the needed data. Some of these
functions have default behaviour, and as such, the code generator creates stub
functions that can be then edited by the user. This means that the XML de-
scription can be used just for the module bootstrap.

The Perl module should also include a main function that will receive the
request in a dictionary, and should return an answer as a Perl structure. This
structure will be then converted into JSON and sent to the client.

In the Perl community a Perl module is, usually, shipped together with a set
of tests. Therefore, the test information available in the XML definition file is
used to generate such tests, like the one presented in listing 1.3.

These tests can be used both for testing the Perl module locally, as well as
to test the production service (in order to guarantee all the services are running
correctly).

SplineAPI: Building a REST API for NLP services 107

SLATE’2015

Listing 1.2. Module generated by the XML example.

package Sp l ine : : FreeLing : : Tokenizer ;

use FL3 ’ pt ’ ;

my %i n d e x i n f o = (
hash token => ’ t oken i ze r ’ ,
parameters => {

ap i token => {
d e s c r i p t i o n => ”The token to i d e n t i f y the user ” ,
r equ i r ed => 1 ,

} ,
t ex t => {

d e s c r i p t i o n => ”The text to be token i zed ” ,
r equ i r ed => 1 ,

} ,
} ,
d e s c r i p t i o n => ” Process o f breaking a stream o f t ex t up in to

tokens . ” ,
co s t => 1 ,

) ;

sub get token { re turn $ i n d e x i n f o {hash token } }

sub g e t i n f o { re turn \%i n d e x i n f o }

sub c o s t f u n c t i o n { re turn $ i n d e x i n f o { co s t } }

sub param funct ion {
return 0 or 1 depending on the v a l i d a t i o n o f the r eque s t
re turn 1 ;

}

sub main funct ion {
my ($input params) = @ ;
my $tokens = f r e e l i n g t o k e n i z e r ($input params) ;
r e turn encode j son $tokens ;

}

sub f r e e l i n g t o k e n i z e r {
my ($input params) = @ ;
my $text = $input params−>{t ex t } ;
r e turn u n l e s s $text ;

my $pt tok = Lingua : : FreeLing3 : : Tokenizer−>new(” pt ”) ;
my $tokens = $pt tok−>t oken i z e ($text , t o t e x t => 1) ;
r e turn $tokens ;

}

1 ;

108 Nuno Vieira, Alberto Simões and Nuno Ramos Carvalho

SLATE’2015

Listing 1.3. Tests generated by the XML example.

use s t r i c t ;
use warnings ;
use HTTP: : Tiny ;
use JSON;

use Test : : More t e s t s => 2 ;

my $host = $ENV{SPLINE HOST} | | ’ l o c a l h o s t ’ ;
my $port = $ENV{SPLINE PORT} | | 8080 ;

my %params = () ;
$params{ ap i token } = ’ a token ’ ;
$params{ t ex t } = ’ I w i l l be token i zed . ’ ;

my $got = HTTP: : Tiny−>new−>post form (” http : / / ” . $host . ” : ” . $port
. ”/ t o k e n i z e r ” , \%params) ;

my $ r e s u l t = decode j son ($got−>{content }) ;

ok ($ r e su l t −>[0] eq ’ I ’ , ” Test the f i r s t word ”) ;

ok ((s c a l a r @{ $ r e s u l t }) == 5 , ” Test the r e s u l t l ength ”) ;

4 Conclusions

In this document we present the architecture for a module-based server for
REST services. The motivation for its development is the need to make NLP
related operations available easily, without all the problems that comprise their
usual configuration and installation.

Although the whole framework is ready and some services are already avail-
able (http://spline.di-um.org/) we are aware that different tools will dictate
different problems to manage. In fact, we are already aware of some of the chal-
lenges we will face:

– Some tools need to receive whole files (for example, XML files) that are not
practical to send as a standard parameter. This means the system should
be able to deal with multipart POST encoding. This will be transparent to
the user as most programming languages make that kind of request easy to
perform. Dancer2 Framework makes it simple to manage all the multiple file
uploading required.

– Some other tools take too much time to complete their jobs. This is a problem
because of the typical HTTP timeouts, and because it is not practical to
keep open connections for long periods of time. With that in mind, our
approach will be based on a service worker, that acts on a job queue. When
a lengthy process is requested, the server will add the job in the worker.

SplineAPI: Building a REST API for NLP services 109

SLATE’2015

At the same time, it will answer the client with a temporary URI where
the service results will be placed. That URI is automatically created with a
JSON file that states the process is in queue, being processed, or complete.
The client can, then, poll the server, knowing at each time the status of its
request. When the job is complete, the URI will be updated with information
about where the results are available (being another JSON file or any other
kind of resulting file). To conduct this task it will be necessary to create a
daemon that manages the queue, on a temporary order, and execute, in the
background, each one of the elements. Each item on that queue is basically
a DSL that indicates the instructions the daemon will run and it will, after
that, update the JSON file with the result information.

Other than these developing challenges we intend to implement in Spline, we
will face other problems as soon as the server starts to be widely used, namely
computational weight and server balancing.

Acknowledgements: This work has been partly supported by FCT - Fundação
para a Ciência e Tecnologia within the Project Scope UID/CEC/00319/2013.

References

1. Cunningham, H., Maynard, D., Bontcheva, K.: Text Processing with GATE. Gate-
way Press CA (2011)

2. Fielding, R.T.: Representational State Transfer (REST). Ph.D. thesis, Univer-
sity of California, Irvine (2000), https://www.ics.uci.edu/~fielding/pubs/

dissertation/fielding_dissertation.pdf

3. Liu, B.: Sentiment Analysis: Mining Opinions, Sentiments, and Emotions. Cam-
bridge University Press (2015)

4. Loper, E., Bird, S.: Nltk: The natural language toolkit. In: Proceedings of the ACL-
02 Workshop on Effective Tools and Methodologies for Teaching Natural Language
Processing and Computational Linguistics - Volume 1. pp. 63–70. ETMTNLP ’02,
Association for Computational Linguistics (2002)

5. Mani, I., Maybury, M.T.: Advances in automatic text summarization, vol. 293.
MIT Press (1999)

6. Martin, J., Jurafsky, D.: Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition,
2nd Edition. Prentice Hall (2009)

7. Padró, L.: Analizadores multilingües en FreeLing. Linguamática 3(2), 13–20 (De-
cember 2011)

8. Pautasso, C., Zimmermann, O., Leymann, F.: Restful web services vs. big’web
services: making the right architectural decision. In: Proceedings of the 17th inter-
national conference on World Wide Web. pp. 805–814. ACM (2008)

9. Rychtyckyj, N.: Machine translation for manufacturing: A case study at ford motor
company. In: Proceedings of the 18th Conference on Innovative Applications of
Artificial Intelligence - Volume 2. pp. 1728–1735. IAAI’06, AAAI Press (2006),
http://dl.acm.org/citation.cfm?id=1597122.1597130

10. Sukrieh, A.: Dancer2::Manual - A gentle introduction to Dancer2 (2013), http:
//search.cpan.org/~sukria/Dancer2-0.10/lib/Dancer2/Manual.pod

110 Nuno Vieira, Alberto Simões and Nuno Ramos Carvalho

SLATE’2015

Engaging researchers in data management with
LabTablet, an electronic laboratory notebook

Ricardo Carvalho Amorim1, João Aguiar Castro1, João Rocha da Silva1, and
Cristina Ribeiro2

1 Faculdade de Engenharia da Universidade do Porto/INESC TEC
{ricardo.amorim3@gmail.com, joaoaguiarcastro@gmail.com,

joaorosilva@gmail.com}
2 DEI—Faculdade de Engenharia da Universidade do Porto/INESC TEC

mcr@fe.up.pt

Abstract. Dealing with research data management is a complex task,
and recent mandates prompt researchers to actively participate in this
activity. Emergent research data platforms are proposing workflows to
motivate researchers to take an active role in the management of their
data. Other tools, such as electronic laboratory notebooks, can be em-
bedded in the laboratory environment to ease the collection of valuable
data and metadata as soon as it is available. This paper reports an ex-
tension of the previously developed LabTablet application to gather data
and metadata from different research domains. Along with this extension,
we present a case study from the social sciences, concerning the identi-
fication of the data description requirements for one of its domains. We
argue that the LabTablet can be crucial to engage researchers in data
organization and description. After starting the process, researchers can
then manage their data in Dendro, a staging platform with stronger,
collaborative management capabilities, and become able to export their
annotated datasets to selected research data repositories.

1 Introduction

With increasing amounts of research data being produced every year [3], institutions
are implementing guidelines and workflows to preserve them, in a similar way to what is
already the current practice with publications [5]. Nevertheless, this approach can pose
some barriers to the dissemination and reuse of such datasets, as a consequence of the
lack of metadata [9] that is essential for other researchers to understand the origin and
production context of a specific dataset. Likewise, gathering domain-level metadata at
the deposit stage can be a very demanding (and time consuming) task for curators,
that sometimes are responsible for more than one research domain. Researchers play a
key role in their data description [6], as they have the best knowledge of their produc-
tion environment, and can add metadata to their data from the early stages. Existing
platforms for research data management, such as Figshare3 or Zenodo4, already sup-
port simple descriptive metadata, but the barrier between them and the researchers’

3 http://figshare.com/
4 http://zenodo.org/

IV Symposium on Languages Applications and Technologies Pages 111–116
18th and 19th June, Madrid, Spain 978-84-606-8762-7

working environment is still high. It is therefore recognized that important data and
metadata is still temporarily stored in fragile locations such as personal computers
and laboratory notebooks [8]. Ultimately, even with guidelines for data management
in place, some of these resources never reach the deposit stage.

In this paper, we present LabTablet as an application to help researchers gather
data and metadata during experimental runs or field trips, and directly export them to
a staging repository—in our case Dendro [4]—responsible for creating a collaborative,
description-oriented approach to research data management. With this approach, we
can provide a better handling of research data and provide conditions for capturing
metadata as soon as it becomes available. At the end of a research project, Dendro is
capable of creating and exporting the dataset package to existing platforms for data
preservation, that can also take advantage of the included metadata to improve the
dataset visibility.

2 Research data management

Amid the research activities, researchers produce both raw and processed data that
support their conclusions towards the project goals. These resources are sometimes
neglected after the publication of the results, removing the link between project results
and the data that supported them.

Managing research data has evolved to include tasks besides storage and bit preser-
vation, ensuring a proper handling of research outputs to facilitate their retrieval and
long-term preservation. Furthermore, as it happens with research publications, the
deposit of research assets in repositories has to be accompanied by a comprehensive
description—metadata—to facilitate their retrieval and interpretation. Ideally, when
a dataset is provided with sufficient metadata, others will be able to reuse it [9]. An
important result is the credit that data producers get from the publication, and data
reuse can also reduce costs inherent to the research activity.

2.1 Data description

Datasets and publications have different requirements with respect to description. Con-
sidering the different scenarios in which datasets are produced, we can identify sets of
possible metadata descriptors that can be directly related to each specific research
domain, and at the same time extend the basic, high level ones, used to describe publi-
cations. For each research domain, the description possibilities vary, and thus, the data
repositories are evolving to comply with this required flexibility [2].

Well-known metadata schemas, such as Dublin Core, have been considered fit to
a broad scope of applications and allowed the emergence of protocols for exchanging
metadata and enhancing publications visibility. The OAI-PMH5 is the best known, and
is widely used to index different repositories’ contents, allowing their resources to be
presented in publications search engines. Basic descriptors, such as title, description
and author, can be added by a designated curator and provide the link between data
and publications, but when considering the broad possibilities for description in each
of the domains, this task has to include researchers. Actively involving researchers in
the description of their data faces some limitations, as the platforms created for this
purpose must also take into account usability requirements and offer features that meet

5 https://www.openarchives.org/pmh/

112 Ricardo Carvalho Amorim, João Aguiar Castro, João Rocha Da Silva and Cristina Ribeiro

SLATE’2015

their goals as researchers, such as receiving credit for their data and sharing them with
their peers.

2.2 Researchers’ engagement in data management

In the course of research activities, researchers often resort to personal computers to
store collected data and to their laboratory notebooks to record any observations or
context. With the increasing amounts of research data, these approaches pose some
risks in terms of data preservation, as well as barriers to their dissemination and reuse.

In the past few years, several platforms emerged to integrate the research envi-
ronment, with some of them being actively used by several communities [2]. These
platforms aim to implement established protocols for data preservation and dissemina-
tion, while featuring easy to use interfaces along with collaborative environments. The
assessment of several existing platforms showed that issues such as data ownership,
dataset description and dissemination are already a concern, although these platforms
are still considered as a final location for dataset deposit. Staging platforms such as
Dendro, on the other hand, aim at creating management tools closer to the researchers’
daily routines and offer a place where they can collaboratively store and describe data.
At the end of the research activity researchers can export the resulting resources to
the final repositories, often aim at long-term preservation.

3 Electronic laboratory notebooks

We have highlighted the importance of data management repositories, both as staging
environments and as research data preservation solutions. As several researchers resort
to field trips or experimental runs to gather data, there is still a gap between data
production and their deposit in the mentioned platforms. Electronic laboratory note-
books can fill this gap, allowing researchers to record and deposit data directly from
the laboratory, while mitigating the risk of loosing such records during the process [7].
Nevertheless, the existing solutions tend to focus on a particular domain or offer limited
functionality, not taking advantage of some of the available sources of metadata.

3.1 LabTablet

Taking advantage of the growing popularity of handheld devices, LabTablet was de-
veloped as an electronic laboratory notebook to help researchers describe their data as
soon as the project starts. Besides having an easy to use interface, the underlying rep-
resentation for each metadata record follows established standards, ensuring a stream-
lined curation process before the final deposit in a repository. The first version of this
project was mainly focused on gathering metadata in the field, relying on previously
built application profiles, and therefore a set of descriptors for that specific domain.
In any of the versions, LabTablet is capable of uploading each dataset to Dendro, the
chosen staging platform, from which it can later be exported to any preservation so-
lution. This approach allows curators to have standards-compliant metadata records
upon deposit, but more importantly, domain-level metadata, that would otherwise be
lost, is properly maintained.

After preliminary evaluation with researchers from the ecological domain [1], a
new approach was developed, extending the metadata capabilities of this application

Engaging researchers in data management with LabTablet, an electronic laboratory notebook 113

SLATE’2015

and including mechanisms to also gather opportunity data (observations collected by
chance while performing some other activity). Opportunity data can be directly linked
to the researchers’ field trips and be enriched by the use of the tablet’s built-in sensors
to gather data from the available sources such as camera, GPS or accelerometer. In
addition to those, LabTablet also allows voice recordings, sketches, and collecting the
track of a field trip, later exporting the results to a compliant format6. Furthermore,
researchers can also import other types of data (namely spreadsheets) from their own
personal computers. To take advantage of the device, and considering a wider set of
research domains, additional features were also implemented, such as the capability of
managing forms or surveys and filling them directly in the application. The workflow for
such process relies on the researcher to create a model, and to instantiate it whenever
a subject is interviewed. The same applies for other activities that require some kind of
form or survey such as routine evaluations and the observation of experimental runs.
The gathered data is then exported to files that are compatible with common statistical
analysis tools such as Excel or SPSS.

At the end of each field trip (or when the researcher finds it convenient to do so), the
application can sync the collected resources with a repository where researchers are able
to share them with their team or the community, and can ensure that it is stored in the
appropriate location, under their institutions supervision. As with metadata records,
the created package can follow any guidelines, namely the structure of a Submission
Information Package (SIP), from the Open Archival Information System model7.

4 Social Sciences: a case study

As a part of an ongoing partnership, a researcher from the social sciences domain was
interviewed to assess the different data management needs for this specific domain8.
During this interview, a set of questions was proposed to evaluate aspects such as
metadata needs or possible constraints on data sharing.

4.1 The social sciences domain

The interview revealed the researcher’s awareness of the recent evolution of data man-
agement guidelines on this area. However, due to the nature of their data, these were
never applied. Studies in this area are mainly focused on evaluating phenomena in dif-
ferent social groups, directly interacting with them either through field observations,
structured or unstructured interviews, or content analysis. During these activities, the
produced data is mainly of qualitative nature, with a small portion of quantitative
data as well. Qualitative data is, in this case, mostly related with observations or notes
which contents are fully dependent on the producer, whereas quantitative data results
from surveys and questionnaires.

Concerning the publication of research data, the researcher stated some limitations,
as some projects do not expect to disclose data and some datasets are sensitive and need
to be treated (anonymized) prior to their disclosure. Still, for some projects, pursuing

6 A KML-based representation (https://developers.google.com/kml/), containing
a set of connected coordinates, for instance.

7 http://www.iso.org/iso/catalogue_detail.htm?csnumber=57284
8 The survey for this evaluation was based on the Data Curation Toolkit, available at
http://datacurationprofiles.org/

114 Ricardo Carvalho Amorim, João Aguiar Castro, João Rocha Da Silva and Cristina Ribeiro

SLATE’2015

data disclosure would benefit both parts, as they would be able to cite datasets in
publications and their peers could access and reuse such data.

In this regard, LabTablet proved to be capable of handling all these needs in terms
of data production, as well as help researchers identify some useful metadata that can
be added. During the course of this interview, a set of basic Dublin Core elements
revealed to be perfectly fit for the description needs in this domain. Nevertheless, for
a deeper data description, other schemas should also be included. As the researcher
was not familiar with data description, some descriptors could be misused, capturing
actual data rather than metadata.

4.2 Preparing for data description

After identifying the basic description needs and suggesting an initial profile for this
purpose, we proceeded to identify other domain-level descriptors. In this field, the Data
Documentation Initiative (DDI)9 proved to have a suitable set of descriptors for social
sciences domains, namely10:

• Data Collection Methodology — to specify which methodology was used to col-
lect the samples or questionnaires. This revealed to be a recurrent scenario as
researchers often worked with a small set of methodologies;

• Data Source — to identify the source of the collected data, including the associ-
ated project. As some of the projects could include partnerships with other data
providers, this descriptor was chosen to support such specification;

• Sample Size — to state the dimension of the sample or the number of interviewees
during a field session;

The selected descriptors allow a better understanding of the dataset under consider-
ation. Identifying the methodology will, for instance, enable other researchers to search
for datasets that were obtained through a specific method, and the same happens for
the other descriptors such as the Sample Size.

After this selection of descriptors, we proceeded to create the ontology for this do-
main. Along with the descriptors from the Data Documentation Initiative, we included
high level descriptors from the Dublin Core profile as well. This ontology can be loaded
at any time into the LabTablet application and be used to describe data in this area.

5 Conclusions

By analyzing different research domains, we can identify many differences concerning
data management practices. While some groups have data management procedures in
force, most are still far from addressing the issue, mostly due to the nature of their
data rather their motivation.

The researcher from our case study recognized the added value in automatically
exporting the daily produced data to a centralized location, where it could be properly
handled and edited. Additionally, some specialists in the field advise against using any
kind of note taking tools during the interviews, not to influence the interviewee; but the

9 http://www.ddialliance.org/
10 Not all the descriptors are depicted here

Engaging researchers in data management with LabTablet, an electronic laboratory notebook 115

SLATE’2015

researcher considered very important to be able to record or transcribe the interviews
in the background.

We are testing the collection of metadata during the whole research workflow with
several research teams. It is clear by now that devices and tools to make the process
easier on the researchers can make the difference between a process regarded as an
extra burden on researchers and one where they perceive the benefits and get involved.

6 Acknowledgements

Project SIBILA-Towards Smart Interacting Blocks that Improve Learned Advice, ref-
erence NORTE-07-0124-FEDER000059, funded by the North Portugal Regional Op-
erational Programme (ON.2–O Novo Norte), under the National Strategic Reference
Framework (NSRF), through the European Regional Development Fund (ERDF), and
by national funds, through the Portuguese funding agency, Fundação para a Ciên-
cia e a Tecnologia (FCT). João Rocha da Silva is also supported by research grant
SFRH/BD/77092/2011,provided by the Portuguese funding agency, Fundação para a
Ciência e a Tecnologia (FCT).

References

1. Ricardo Carvalho Amorim, João Aguiar Castro, João Rocha da Silva, and Cristina
Ribeiro. LabTablet: semantic metadata collection on a multi-domain laboratory
notebook. In Metadata and Semantics Research, pages 193–205. Springer, 2014.

2. Ricardo Carvalho Amorim, João Aguiar Castro, João Rocha da Silva, and Cristina
Ribeiro. A Comparative Study of Platforms for Research Data Management: Inter-
operability, Metadata Capabilities and Integration Potential. In New Contributions
in Information Systems and Technologies, pages 101–111. Springer International
Publishing, 2015.

3. Christine L. Borgman. Advances in Information Science: The Conundrum of Shar-
ing Research Data. Journal of the American Society for Information Science and
Technology, 63(6):1059–1078, 2011.

4. João Rocha da Silva, João Aguiar Castro, Cristina Ribeiro, and João Correia Lopes.
The Dendro research data management platform: Applying ontologies to long-term
preservation in a collaborative environment. In Proceedings of the iPres 2014 Con-
ference, 2014.

5. Clifford A. Lynch. Institutional repositories: essential infrastructure for scholarship
in the digital age. Association for Research Lybraries. Bimonthly Report no.226,
2003.

6. Liz Lyon. Dealing with Data: Roles, Rights, Responsibilities and Relation-
ships,(2007). Consultancy Report. UKOLN, (June):1–65, 2011.

7. Jason T Nickla and Matthew B Boehm. Proper laboratory notebook practices: pro-
tecting your intellectual property. Journal of neuroimmune pharmacology, 6(1):4–9,
March 2011.

8. Carol Tenopir, Suzie Allard, Kimberly Douglass, Arsev Umur Aydinoglu, Lei Wu,
Eleanor Read, Maribeth Manoff, and Mike Frame. Data Sharing by Scientists:
Practices and Perceptions. PLoS ONE, 6(6):e21101, 2011.

9. Craig Willis, Jane Greenberg, and Hollie White. Analysis and Synthesis of Metadata
Goals. Journal of the American Society for Information Science and Technology,
63(8):1505–1520, 2012.

116 Ricardo Carvalho Amorim, João Aguiar Castro, João Rocha Da Silva and Cristina Ribeiro

SLATE’2015

Exploiting Twitter for the Semantic Enrichment
of Telecommunication Alarms

Hugo Gonçalo Oliveira1, João Marques1, and Lúıs Cortesão2

1 CISUC, Department of Informatics Engineering
University of Coimbra, Portugal

2 Portugal Telecom Inovação e Sistemas, Aveiro, Portugal
hroliv@dei.uc.pt, joliv@student.dei.uc.pt, luis-m-cortesao@telecom.pt

Abstract. Everyday, several different alarms are triggered in a telecom-
munications network. Inspired by works that mine useful information
from Twitter, we aim at exploiting this resource for enriching those
alarms. We assume that, during the alarms, Twitter users would mention
potential causes, and that network customers would tweet to complain
about the quality of their service. We explored a set of alarms and tweets
from the same period of time and came to the conclusion that tweets on
potential causes of the alarms are hard to find. The most significant
findings are that, during an alarm, there are more tweets related to rain
events, or those swearing and thus a sign of complaint.

Keywords: information extraction, event detection, social network
mining, Twitter, telecommunication alarms

1 Introduction

The increasing popularity of social networks such as Twitter or Facebook has
made social media a relevant part of people’s lives. These networks are highly
accessible and have hundreds of millions of users all over the world, who read,
post, and share real-time messages, in a fast pace. They have thus become rel-
evant sources of information, also suitable for exploitation by computational
tools that acquire precious knowledge, such as people’s opinion on certain sub-
jects [10], current trends, or general events [3].

Inspired by works that mine useful information from Twitter (see section 2),
our project aims at exploiting this social network for semantically-enriching
alarms triggered by technical problems in a telecommunications network. Ideally,
Twitter would provide relevant information and contribute to a better under-
standing of the alarm’s cause (eg. natural disaster, accident, concentration of
people), thus leading to additional measures by the network managers, to min-
imize negative consequences. It could be further used for analysing the impact
of the alarms on the network customers (eg. whether they lead to complaining
tweets). To this end, we have used all the alarms triggered during an entire
month, for the wired and mobile networks of Portugal Telecom, one of the ma-
jor telecommunication operators in Portugal. For the same period of time, we

IV Symposium on Languages Applications and Technologies Pages 117–126
18th and 19th June, Madrid, Spain 978-84-606-8762-7

collected all the tweets we could obtain from Twitter’s public streaming API,
published in Portugal and written in Portuguese.

This paper reports on several experiments with the previous datasets, ex-
plored in order to gather more insights on the data and assess the suitability of
Twitter for the task at our hands. These preliminary experiments involved the
combination of the alarm data with the Twitter data, to identify tweets posted
at the same time and from the same place of an alarm, as well as a shallow
analysis of the tweets text, for further exploitation. Though we do not see this
work as finished, the performed experiments have shown that we have a very
challenging goal. In fact, looking for useful tweets has revealed to be the same as
looking for a needle in a haystack. This might be due to the small population of
Portugal, or to the lower popularity of Twitter in our country, as compared to
other countries where experiments of this kind were quite successful. This adds
to the small size of the sample of tweets that we can get for free and to the long
term of some alarms. Despite all these issues, there is much to report, and we
strongly believe that some of the presented results might be relevant for other
researchers using Portuguese tweets for different purposes.

The remaining of the paper starts with an overview on information extrac-
tion from Twitter, with a focus on event detection. Following, we describe our
dataset of alarms and tweets. After this, we present the experiments performed
to investigate whether the alarms could be semantically enriched by Twitter,
including a manual classification of tweets published during alarms according
to their utility, searching for potentially relevant keywords, and classifying the
tweets automatically, according to mentioned events. We end by speculating on
possible reasons for the lack of useful tweets, and discuss future directions for
this research, which should move on to explore other available data sources.

2 Background and Related Work

Twitter is a microblogging social network, with ≈288M monthly active users
and 500M messages (tweets) sent every day3. This overwhelming number of
tweets, available every second with fresh information, made Twitter an attractive
media for research on text mining and information extraction (IE). But Twitter
holds specific features that make it particular and increase complexity, resulting
in poor performance by traditional tools. Tweets: use informal language, with
many abbreviations; ignore some grammatical rules and conventions (eg. they
rarely use capital letters); are limited to 140 characters; and use hashtags (#)
for additional context. So, specific natural language processing (NLP) tools were
developed for IE from Twitter (eg. named entity recognizers [7]), used in tasks
such as opinion mining [10] or event detection [3, 11].

TwiCal [11] extracts event calendars from Twitter, based on probabilistic
latent variable models. Events are characterised by their name, date, descrip-
tion, and type (eg. sports, politics, meeting). TwiCal assumes that the involved
entities and the event date play an important role (eg. events in the same date

3
https://about.twitter.com/company

118 Hugo Gonçalo Oliveira, João Marques and Luís Cortesão

SLATE’2015

tend to be of the same type). Other approaches to event detection cluster tweets
according to their timestamp, location, hashtags and used text [18, 3].

This topic has been applied to a varied range of more specific tasks, such as
sub-event identification in football matches [1], crime prediction [17], user vaca-
tion plans and revealing medical conditions mining [9], disease rates and alcohol
sales volumes [4], or to natural crisis management. On the latter, Twitter has
been used for tracking forest fires [8], reporting [13], detecting [6] and assess-
ing the damages [2] of earthquakes, or for the early detection of tsunamis [19].
Those systems exploit the real-time nature of Twitter and the fast spreading
of information it provides. They also consider space and time information for
detecting natural disasters. Yet, although the publication time is obtained in a
straightforward manner, some researchers report that it does not always match
the real-word spread of the disaster [8]. Identifying the event location might be
even more problematic because: not all tweets have explicit coordinates attached;
the coordinates are not always very accurate; tweets are sometimes posted from
a different location than the disaster. This is why there is work on geo-tagging
tweets with unavailable coordinates, with applications to crisis management [5].

Despite a close relation to the described works, we are not aware of Twitter
mining for improving the description of alarms in a telecommunications network,
only for events in general news [16]. Moreover, none of the previous approaches
targets Portuguese, so their adaptation would require the development of NLP
tools specifically for Portuguese tweets. We should still mention that Portuguese
tweets have been exploited for topic detection [12], sentiment analysis [15], and
even for hazard management, such as predicting flu incidence [14].

3 Datasets explored

Our main goal is to use Twitter to semantically-enrich alarms triggered in the
telecommunications network of Portugal Telecom (PT). Our hypothesis is that
Twitter users would tweet about the possible causes of the alarm, potentially
useful for network management. Alternatively, customers would complain about
their quality of service (eg. slow/unavailable network). Before starting to develop,
we enrolled on an exploratory work, in order to become more familiar with the
domain of our problem and make a preliminary assessment on the suitability
of Twitter for this purpose. For such, we explored two datasets: one with all
the alarms triggered during a month, and, for the same period, all the tweets
written in Portuguese and published in Portugal (within API limits). This section
describes both datasets, followed by information on their combination.

3.1 Description

The alarm dataset, provided by PT’s Alarmistics team, has a total of 873k
alarms, triggered between 30th September and 29th October 2014 by the Alarm
Manager system. Each alarm is characterised by the following properties: cre-
ation time (date), archive time (date), local code (according to a 3-level hi-
erarchy: network group, local network, station area), technology (eg. 3G, 4G,

Exploiting Twitter for the Semantic Enrichment of Telecommunication Alarms 119

SLATE’2015

IPTV), entity and problem. The duration of an alarm is obtained by the dif-
ference between the archive and the creation times. The last two properties
were obfuscated due to privacy reasons. Moreover, we noticed that alarms in the
same place and during an overlapping period of time were common. Therefore,
we clustered them, such that alarms in the same cluster would share the local
code, entity and problem fields, and would occur in overlapping time periods.
After this procedure, we were left with 551,513 alarms.

For the same period of time, we collected 498,896 tweets, which, according to
Twitter, were written in Portuguese and published in Portugal. This was done
through Twitter’s public Streaming API4, a service that provides a continuous
stream of tweets, in real-time, corresponding to a random sample of all public
statuses, estimated to 1% of all the published tweets. Each tweet is characterised
by the following relevant properties, among others: ID, timestamp, location,
coordinates, text, language.

To enable queries to the datasets, a relational database was created with a
table for the alarms and another for the tweets, both populated with their data.

3.2 Pairing Alarms and Tweets

In order to match tweets and potentially related alarms, each alarm was paired
with tweets published at the same time and location. We observed a huge dis-
persion in the duration of an alarm, on average, 74 minutes, with a standard
deviation of 411 minutes. An alarm may last for only a few minutes, but can also
take several days. For instance, 188,082 alarms lasted for less than 5 minutes,
and 353,867 for less than 10. At the other end, 5,708 alarms lasted for more than
one day, and 158 for more than one week. Since Twitter users might notice the
alarm cause before it is triggered, and they might keep talking about it after the
alarm has been archived, for each alarm, we also paired tweets published between
15 minutes before the alarm creation and 60 minutes after archive time. Also,
since an alarm could lead to denial of service, this has in mind that affected
users may only be able to use the Internet when the problem is solved.

Only tweets that matched either the second (local network) or the third
level (station area) of the alarms location hierarchy were considered. These are
typically the name of a city and the parish or city area. The top level (network
group) is typically the name of a district and was considered to be too general.
Figure 1 shows an alarm and some tweets matched this way.

After this, 236,227 tweets were matched with alarms, based on their times-
tamp and location name, which is about a 47% of all the tweets in the dataset.
This is a little less surprising if we add that the 67,605 alarms from the clustered
dataset with at least one matching tweet lasted, on average, for about 28 hours,
with a standard deviation of 78 hours. Most of the alarms without matching
tweets lasted for only a few minutes and were triggered for small locations.

As relevant tweets may be published from different locations than the alarm,
we also matched those published at the same time and mentioning the alarm

4
https://dev.twitter.com/streaming/public

120 Hugo Gonçalo Oliveira, João Marques and Luís Cortesão

SLATE’2015

Created Archived ... Technology LocalNetwork StationArea
2014-10-10 00:31:59 2014-10-11 13:09:22 ... TEC X LOC Y LOC Z

TwitterID Timestamp Location Text
520662632240783361 2014-10-11 13:09:22 LOC Z Adoro quando me ignoram
520680458729029635 2014-10-10 20:50:19 LOC Z Será que se eu ligar a televisão consigo ver?
520712340216758272 2014-10-10 22:01:09 LOC Z Vou tomar banho ??

Fig. 1. Alarm and tweets published from the alarm’s location, while it was on. Real
alarm location name and technology are not provided due to confidential reasons.

location. We did not use a named entity recogniser because we are not aware
of a such a system, available, and trained with Portuguese tweets. Given the
specificities of this kind of text, where location names and other entities are
frequently uncapitalized or abbreviated, we would get a noisy analysis either
way, and chose the simplest approach for exploration. Only 7,891 tweets were
matched this way, and most of the results using this subset are not significant.

4 Experimentation

This section reports on experiments performed to assess the suitability of Twitter
for semantically-enriching the telecommunication alarms. They should be seen
as exploratory experiments that aim to provide useful insights for the future of
this project and for other researchers willing to exploit Twitter.

4.1 Manual labelling of tweets

To have some clues on the kind of tweets we could expect during an alarm, we
generated two random samples of 200 tweets matching the time of an alarm
and: (a) one matching also the location; (b) another mentioning the name of
the location. For each sample, we manually tagged the tweets as follows: (a)
mentions an occurrence that could be the cause of the alarm; (b) complaints on
the service quality; (c) not relevant for our task.

The majority of the tweets were not relevant at all for this task. None of the
samples contained a potential complaint. The first sample contained five tweets
mentioning a meteorological event, such as rain, and the second contained six
mentioning meteorological events or loss of electricity. Figures 2 and 3 display
those tweets and their rough translation. We further confirmed that the second
sample was noisy and some location names were matched by accident. There are
locations in Portugal named luz (light/electricity) and guia (drive), in figure 3,
among others, such as tomar (to take).

4.2 Keyword search

For additional insights on the kind of tweets and possible relations to the alarms,
we queried our database for tweets with specific keywords, which could be some-
how related to potentially problematic events. Those included words related to:

Exploiting Twitter for the Semantic Enrichment of Telecommunication Alarms 121

SLATE’2015

esta a chover, outra vez?
(it is raining, again?)

ta a trovejar bue, vou morrer aqui
(there is much thunder going on, I’m going to die here)

Ta um relâmpago
(there is a lightning)

Mandei um sms a minha mãe que esta no quarto ao lado a dizer que esta a chover
(I sent a sms to my mother who is in next door’s bedroom saying it is raining)

hoje apanhei uma chuva do crl
(today I caught heavy rain)

Fig. 2. Tweets published in the same location and at the same time as an alarm,
mentioning a meteorological event.

E o sol apareceu! #greenfest #figodaindia #icecream #sol FIARTIL (Feira de Artesanato do
Estoril) http://t.co/M9K8xGo8TB
(An the sun came out! #greenfest #figodaindia #icecream #sol FIARTIL (Feira de Artesanato do Estoril)
http://t.co/M9K8xGo8TB)

O tempo está a decidir se chove ou se faz sol ???????? Sobral de Monte Agraço
http://t.co/RZlMUZsayi
(The weather is deciding whether it rains or it is sunny ???????? Sobral de Monte Agraço http://t.co/RZlMUZsayi)

Em Oeiras está trovoada, a vida é bela
(In Oeiras there is thunder, life is beauty)

Guia até à casa da Cheila, tive lá um bocado e voltei para casa, nem deu para sair porque chuva
(Drive to Cheila’s, I was there for a bit and came back home, it wasn’t even possible to leave because it was
raining)

Eh pah! Ja e a 2da vez que falha a luz esta semana...
(Sheesh! It is the second time electricity fails this weak...)

Sou so eu que nao tenho luz?
(Is it just me who has no electricity?)

Fig. 3. Tweets published at the same time as an alarm, mentioning both the location
of the alarm and a possible cause of the alarm. Location names are in bold.

– Bad weather: chuva (rain), chover (to rain), trovoada (thunder), cheia (flood),
vento (wind), ...;

– Networks: net (short for network), tv (tv), telefone (phone), telemóvel (mobile
phone), meo (short for PT’s network), luz (electricity), ...

– Generic problems: problema (problem), acidente (accident), ...
– Swearing: merda (shit), bosta (shit), ...

For each word, we compared the frequency of their mentions in tweets match-
ing the alarms location and time, in opposition to tweets not matched with any
alarm. Table 1 has a selection of those numbers, together with the results of a
Z test – statistically significant at the 95% confidence level if Z > 1.96. This
showed that, although the proportion of several words is slightly higher during
the alarms, only the differences of the rain-related and the swearing words are
statistically significant. We may thus speculate that there are more alarms when
it is raining, and that people swear more during an alarm, possibly complaining
about their quality of service. We cannot draw additional conclusions.

4.3 Case study: complaining about the network service

Although the difference was not significant, we manually labelled all the tweets
published during an alarm, and mentioning the word ‘net’, to check how many
were possible alarm causes and/or complaints. Since this word denotes only the

122 Hugo Gonçalo Oliveira, João Marques and Luís Cortesão

SLATE’2015

Words
Tweets vs Alarms Z
Match No match Significance

Prob # Prob Score @95%

chuva 447 0.19% 280 0.11% 7.6390 Yes
chover 335 0.14% 219 0.08% 6.1880 Yes

trovoada 123 0.05% 70 0.03% 4.5586 Yes
cheia 898 0.38% 934 0.36% 1.4321 No
vento 56 0.02% 49 0.12% 1.2281 No

luz 151 0.06% 150 0.06% 0.9788 Yes
meo 42 0.02% 72 0.03% -2.2473 No
net 525 0.22% 590 0.22% -0.1773 No

Words
Tweets vs Alarms Z
Match No match Significance

Prob # Prob Score @95%

acidente 34 0.01% 23 0.01% 1.8599 Yes
problema 355 0.15% 360 0.14% 1.2328 No

tv 178 0.08% 255 0.10% -2.6023 No
telemóvel 655 0.28% 743 0.28% -0,3729 No

merda 3727 1.58% 3818 1.45% 3.5884 Yes
crl 2625 1.11% 2660 1.01% 3.3944 Yes

puta 1267 0.54% 1276 0.49% 2.5042 Yes
foda 656 0.28% 627 0.24% 2.7154 Yes

Table 1. Some keywords and their occurrences in tweets matched with alarms by the
local name vs their occurrences in the full set of tweets.

data network, we did not consider tweets matched to an alarm on the ip televi-
sion network (IPTV). From the 301 tweets labelled, 132 (≈43%) were possible
complaints. Figure 4 shows some of them, starting with the only two that addi-
tionally mention potential alarm causes: weather and electricity loss.

A minha net está como o tempo lá fora. Uma valente merda
(My net is like the weather outside. A real shit)

Fiquei sem luz e sem net assim de repente , q cena do mal
(I was without electricity and net out of a sudden, what a bad thing)

A net em minha casa decidiu não funcionar ????
(The net in my house decided no to work ????)

A net está super lenta
(The net is super slow)

A net da OPERATOR X tem tado uma bela merda
(OPERATOR X’s net has been a real shit)

Ke nervos.. A net esteve 4 horas sem dar -.-
(So nervous.. The net was 4 hours without working -.-)

@im a mermaiid queriia ter vindo mais cedo mas a net num deu a tarde toda :c
(@im a mermaiid I wanted to have come earlier but the net did not work the entire afternoon :c)

a minha net é uma merda -.-
(my net is shit -.-)

Fig. 4. Tweets published in the same location and at the same time as an alarm, and
containing the word ‘net’ in a complaint on the quality of their network.

To check whether complaining in Twitter was a common practice, we selected
a random sample of 100 that did not match any alarm and contained the word
‘net’. This time, the percentage of complains was 31% which is still high, but
significantly lower than 43%. Here, we should recall that not all Twitter users
are PT customers, and their network providers might have problems at different
times. The name of the network operator is hard to identify because it is rarely
mentioned in the tweet – notice table 1, which shows only 114 mentions of
‘meo’, a short name for PT, in the full set tweets. In addition to this, there
might be problems that affect only the personal network of a specific customer
and, consequently, do not trigger any alarm.

4.4 Event classification in tweets

In a final experiment, we were inspired by some of the works referred in section 2
on event detection from Twitter. We used a set of text classifiers, developed in
a previous project, for identifying types of events mentioned in tweets. Twelve

Exploiting Twitter for the Semantic Enrichment of Telecommunication Alarms 123

SLATE’2015

classifiers were used, each learned for the following event types: accident, celebra-
tion, ceremony, concert, exhibition, judicial, manifest, meeting, nature, political,
show and sports. Each classifier had been trained with 200 Portuguese tweets,
half manually labelled as positive and another half as negative, for their event
type. All the training tweets were retrieved from Twitter during January and
February 2014 and manually selected to fill the 50% proportion of positive and
negative examples for each event type. A single tweet could belong to one, more,
or no type. Labelled tweets were imported to the Mallet toolkit5, which con-
verts input text to features and includes several text classification algorithms
out-of-the-box. In this case, the Maximum Entropy algorithm was used, because
it lead to the best results in a 10-fold cross validation. For each event type, ac-
curacy ranged from 76% (show) and 78% (celebration) to 88% (sports) and 91%
(concert). Accident and nature were both at 84%.

Although the classifiers are quite rudimentary – they rely only in Mallet’s
black-box for identifying the features and learning from them – we used the
results of the tweet classification to test whether there was any kind of event more
frequently mentioned during an alarm. The obtained results for the most relevant
event types are presented in table 2. They show that, except for the nature type,
all events are mentioned in the same proportion, during and not during an alarm.
Events of the type nature are more frequently mentioned in tweets matched with
alarms. According to a Z-test, the latter result is also statistically significant.
This is in agreement with the previous experiments, where we noticed that rain-
related words were used more frequently during an alarm.

Event
Tweets vs Alarms

Z Significance
Match No match

Prob # Prob Score @95%

accident 69 0.03% 73 0.03% 0.2963 No
celebration 332 0.14% 361 0.14% 0.2942 No
ceremony 163 0.07% 187 0.07% -0.2918 No
concert 413 0.17% 515 0.20% -1.7378 No
nature 332 0.14% 302 0.11% 2.5311 Yes
show 92 0.04% 117 0.04% -0.9646 No
sports 116 0.05% 138 0.05% -0.5369 No

Table 2. Tweets classified automatically according to mentioned event types, during
and not during an alarm.

5 Concluding remarks

We have reported on an exploratory work towards the utilization of Twitter for
semantically enriching alarms triggered in a Portuguese telecommunications net-
work. Preliminary experiments, presented in this paper, showed that, although
not very often, users tweet about the weather and complain about the quality of
their network connection. These experiments were repeated more recently with
different intervals for matching tweets and alarms (eg. different times before cre-
ation and after archive, minimum alarm duration set to 5 seconds and maximum
to 24 hours) and for a different period (March 2015). Even though, due to the

5
http://mallet.cs.umass.edu/

124 Hugo Gonçalo Oliveira, João Marques and Luís Cortesão

SLATE’2015

better weather, rain-related tweets were much less in March, they were still sta-
tistically more frequent during an alarm. On the other hand, assumptions on the
complaints were not confirmed.

But useful tweets are always shuffled in a very noisy set, which makes it harder
to identify them. This suggests that Twitter is not the most suitable means
for achieving our purpose, at least in Portugal. Despite its growing popularity,
several reports one can find in the Web show that Twitter has not had as much
penetration in Portugal, when compared to other countries6. Other facts that
contribute to this negative result are: the limited number of tweets available
through Twitter’s public streaming API, which are just a sample of all the tweets,
more precisely, an estimated 1%; and the long duration of the matched alarms
(on average 28 hours), which adds too much noise and increases the number of
irrelevant tweets matched. And we should not ignore the small population of
Portugal, as compared to other countries, such as the United States of America.

Future lines of work towards our goal include the exploitation of additional
information sources to minimize the strong limitations of Twitter. These should
include news websites and others that provide structured information on weather
alerts and cultural events. Regarding Twitter, we will repeat the exploratory ex-
periments in similar datasets for specific periods of time around known events.
We will devise considering the technology that triggered the alarm (mobile net-
work or television). We should also spend some time with our classifier, possibly
by re-arranging the set of event types, selecting new training datasets, and ex-
ploiting additional features, not only Mallet’s. Finally, it would definitely be
useful to train an additional classifier for complaining tweets. This would help
PT measuring the impact of their alarms in their customers satisfaction.

Acknowledgements
This work was developed in the scope of a project funded by Portugal Telecom In-

ovação e Sistemas, under the cooperation and innovation programme between PT and

academic organisations.

References

1. Alonso, O., Shiells, K.: Timelines as summaries of popular scheduled events. In:
Proc of 22nd Intl Conf on World Wide Web Conference, Companion. pp. 1037–
1044. WWW ’13, WWW / ACM, Geneva, Switzerland (2013)

2. Avvenuti, M., Cresci, S., Marchetti, A., Meletti, C., Tesconi, M.: Ears (earthquake
alert and report system): A real time decision support system for earthquake crisis
management. In: Proc of 20th ACM SIGKDD Intl Conf on Knowledge Discovery
and Data Mining. pp. 1749–1758. KDD ’14, ACM, New York, NY, USA (2014)

3. Becker, H., Naaman, M., Gravano, L.: Beyond trending topics: Real-world event
identification on Twitter. In: Proc of 5th Intl Conf on Weblogs and Social Media.
ICWSM ’11, AAAI Press (2011)

6
Although we could not find a specific study on the usage of Twitter in Portugal, our country is
never listed in the top countries in terms of percentage of Twitter users. Also, in the World Map
in http://www.beevolve.com/twitter-statistics/#b1 (retrieved on March 2015) Portugal had one
of the lightest shades of blue, which corresponds to the countries with less Twitter users.

Exploiting Twitter for the Semantic Enrichment of Telecommunication Alarms 125

SLATE’2015

4. Culotta, A.: Lightweight methods to estimate influenza rates and alcohol sales
volume from Twitter messages. Language Resources and Evaluation 47(1), 217–
238 (2013)

5. Ghahremanlou, L., Sherchan, W., Thom, J.A.: Geotagging twitter messages in
crisis management. The Computer Journal (2014)

6. Guy, M., Earle, P., Ostrum, C., Gruchalla, K., Horvath, S.: Integration and dis-
semination of citizen reported and seismically derived earthquake information via
social network technologies. In: Proc of 9th Intl Conf on Advances in Intelligent
Data Analysis. pp. 42–53. IDA’10, Springer (2010)

7. Li, C., Weng, J., He, Q., Yao, Y., Datta, A., Sun, A., Lee, B.S.: TwiNER: Named
entity recognition in targeted Twitter stream. In: Proc of 35th Intl ACM SIGIR
Conf on Research and Development in Information Retrieval. pp. 721–730. SIGIR
’12, ACM, New York, NY, USA (2012)

8. Longueville, B.D., Smith, R.S., Luraschi, G.: ”OMG, from here, i can see the
flames!”: a use case of mining location based social networks to acquire spatio-
temporal data on forest fires. In: Zhou, X., Xie, X. (eds.) Proc of 2009 Intl Work-
shop on Location Based Social Networks (GIS-LBSN). pp. 73–80. ACM (2009)

9. Mao, H., Shuai, X., Kapadia, A.: Loose tweets: An analysis of privacy leaks on
Twitter. In: Proc of 10th Annual ACM Workshop on Privacy in the Electronic
Society. pp. 1–12. WPES ’11, ACM (2011)

10. Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion
mining. In: Proc of 7th Intl Conf on Language Resources and Evaluation. LREC’10,
ELRA, Valletta, Malta (may 2010)

11. Ritter, A., Mausam, Etzioni, O., Clark, S.: Open domain event extraction from
Twitter. In: Proc of 18th ACM SIGKDD Intl Conf on Knowledge Discovery and
Data Mining. pp. 1104–1112. KDD’12, ACM (2012)

12. Rosa, H., Carvalho, J.P., Batista, F.: Detecting a tweet’s topic within a large num-
ber of Portuguese Twitter trends. In: Proc of 3rd Symposium on Languages, Ap-
plications and Technologies. pp. 185–199. OASICS, Schloss Dagstuhl (June 2014)

13. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: Real-time
event detection by social sensors. In: Proc of 19th Intl Conf on World Wide Web.
pp. 851–860. WWW ’10, ACM, New York, NY, USA (2010)

14. Santos, J.C., Matos, S.: Predicting flu incidence from portuguese tweets. In: Proc
of Intl Work-Conference on Bioinformatics and Biomedical Engineering. pp. 11–18.
IWBBIO’13, Copicentro Editorial (2013)

15. Souza, M., Vieira, R.: Sentiment analysis on twitter data for portuguese language.
In: Proc of 10th Intl Conf on Computational Processing of the Portuguese Lan-
guage. pp. 241–247. PROPOR’12, Springer (2012)

16. Tanev, H., Ehrmann, M., Piskorski, J., Zavarella, V.: Enhancing event descriptions
through twitter mining. In: Breslin, J.G., Ellison, N.B., Shanahan, J.G., Tufekci,
Z. (eds.) Proc of 6th Intl Conf on Weblogs and Social Media. ICWSM ’12, AAAI
Press (2012)

17. Wang, X., Gerber, M.S., Brown, D.E.: Automatic crime prediction using events
extracted from Twitter posts. In: Proc of 5th Intl Conf on Social Comput-
ing, Behavioral-Cultural Modeling and Prediction. pp. 231–238. SBP’12, Springer
(2012)

18. Wang, Y., Xie, L., Sundaram, H.: Social event detection with clustering and fil-
tering. In: Working Notes Proceedings of MediaEval 2011 Workshop. vol. 807.
CEUR-WS.org (2011)

19. Zielinski, A., Middleton, S.E., Tokarchuk, L.N., Wang, X.: Social media text mining
and network analysis for decision support in natural crisis management. In: Proc
of 10th Intl Conf on Information Systems for Crisis Response and Management.
pp. 840–845. ISCRAM 2013, Karlsruher Institut fur Technologie (2013)

126 Hugo Gonçalo Oliveira, João Marques and Luís Cortesão

SLATE’2015

Meaning Inference of Abbreviations Appearing in
Clinical Studies

Efthymios Chondrogiannis1 , Vassiliki Andronikou1, Efstathios Karanastasis1,
Theodora Varvarigou1,

1 National Technical University of Athens,

9 Heroon Politechniou Str, 15773, Athens, Greece
{chondrog, vandro, ekaranas}@mail.ntua.gr, dora@telecom.ntua.gr

Abstract. The number of publicly available clinical studies is constantly
increasing, formulating a rather promising corpus of documents for clinical
research purposes. However, the abbreviations used in these studies pose a
serious barrier to any text mining technique. This paper presents a study
conducted in the above domain, which used specifically developed tools and
mechanisms in order to process a number of randomly selected documents from
clinicaltrialsregister.eu. The analysis performed indicated that abbreviations
appear at a large scale without their long form (aka expansion). In order to
assess the abbreviations’ true meaning, it is necessary to utilize the appropriate
corpus of documents, apply innovative algorithms and techniques to detect their
possible expansions, and accordingly select the appropriate ones. Furthermore,
the discrimination power of tokens has a distinctive role in abbreviations
construction, and hence, it can facilitate the detection of acronym-type
abbreviations. Additionally, the expressions in which abbreviations appear, as
well as the preceding or following text are of primary importance for selecting
the appropriate meaning.

Keywords: Abbreviations, Expansion, Clinical Studies, Semantic Analysis,
Corpus Annotation

1 Introduction

Clinical studies provide the means for bringing new chemical products in the market
or collecting new evidence for existing interventions. The studies publicly available
by the EU Clinical Trials Register (EUCTR) [3] and ClinicalTrials.gov (CTGV) [5]
sites exceed 150 thousand with more than 20 thousand new studies being registered
every year. Due to the enormous size of the corpus of studies, which is constantly
being increased, it’s difficult or even impossible to manually process these
documents. Consequently, the application of innovative or state of the art text mining
techniques is necessary.

Abbreviations (ABR) comprise an important part of a clinical study. They intend to
provide short forms of often long texts (aka expansions) so that authors can efficiently
use them in the rest of the document. On the other hand, detecting the expansion

IV Symposium on Languages Applications and Technologies Pages 127–136
18th and 19th June, Madrid, Spain 978-84-606-8762-7

(EXP) which an abbreviation stands for is essential for its comprehension. In general,
ABRs have one or more meanings (aka senses) each of which can be expressed with
one or more EXPs. In the context of this work, EXPs that are quite similar with one
another, after the application of state of the art string text processing techniques (e.g.,
Upper Limit of Normal and Upper-Normal Limit), are considered identical.
Consequently, there is often one to one correspondence between the EXP and its
sense, since the possible EXPs of each ABR are composed of totally different words.

Detecting the meaning of ABRs mentioned in clinical studies is quite difficult for
humans and even more so for software agents, since they should be able to cope with
cases in which ABRs have been explicitly defined in the document (often following
specific patterns, i.e. abbreviation syntactic cues) as well as cases in which their EXP
is missing (i.e., not mentioned anywhere in the document). The work presented in this
paper focuses on the results of a conducted software-based analysis regarding the
correct meaning inference of ABRs contained in clinical studies documents.

The document is structured as follows. Section 2 summarizes related work in the
domain of ABR detection and EXP provision. Section 3 briefly describes the study
approach, methodology and involved tools. Section 4 analytically presents the main
study findings, while section 5 expands this discussion to secondary findings and
parameters that could be taken into account and are to be probably covered in future
work. Finally, section 6 provides a summary of the work’s key points.

2 Related Work

Biomedical ABRs have been extensively studied so far and various algorithms and
techniques have been proposed for detecting their EXP. Text alignment approaches
make an attempt to match ABRs with their corresponding EXPs based on the
characters used, such as the algorithm proposed by Schwartz and Hearst [2]. Park and
Byrd [17] have also proposed a rule-based approach for detecting ABR-EXP pairs
based on the patterns they belong to. The outcome of text alignment techniques can be
further improved if syntactic information is used [15]. Machine Learning approaches
have also been used for ABRs recognition, such as the supervised machine learning
used for creating an ABRs dictionary from MEDLINE [14].

Statistical approaches (e.g., ADAM [16]) can also be used for abbreviation
recognition purposes, on condition that the corresponding EXPs appear frequently
enough. Consequently, for providing valuable results, they demand a large number of
biomedical articles while they also need an adequate amount of computer resources
and time. In practice, they can complement acronym-type ABRs recognition
techniques by detecting those ABR-EXP pairs where there is no similarity among the
characters being used, as for example the MBA system presented in work [9].

In order to find the meaning of ABRs when their EXP missing, the simplest
solution is to assign to every instance of an "unknown" ABR the most commonly
used meaning [10]. Alternatively, for abbreviation sense disambiguation a supervised
machine learning system can be used, such as the one presented in work [11], using a
variety of parameters included but not limited to Mesh terms [6] and Concepts Unique
Identifiers [12].

128 E. Chondrogiannis, V. Andronikou, E. Karanastasis and T. Varvarigou

SLATE’2015

3 Study Methodology and Tools

For the analysis of the ABRs used in clinical studies, 141 documents from EUCTR
were randomly selected and accordingly the ABRs’ meaning was specified.
Specifically, for creating a highly variable corpus of documents which adequately
represents the ABRs used in clinical studies, all available documents from the
EUCTR web site were downloaded by means of a developed software component and
accordingly classified into categories based on the number of different ABRs that
they contained. Then οne or more documents from each category were randomly
selected, taking into account the percentage of documents they represent and the total
number of documents to be selected.

In order to precisely determine the meaning of ABRs with the least human effort
required, a web application was specifically developed (Fig. 1) which enables users to
interact with ABRs (highlighted with green color) and accordingly specify their
meaning as well as the specific part(s) of the documents in which the ABRs appear
with the meaning provided. In general, ABRs appear with the same sense throughout
a document [1]. However, the elements which the meaning provided refers to should
be precisely determined, in order to handle such exceptional cases (if any) in which an
ABR has different meanings depending on the document section it is being used in. A
characteristic example is the roman number IV which may also point to “intravenous”
administration of a chemical substance in another sentence. Additionally, in some
cases, an ABR may appear in a phrase (e.g. HIV-positive or HIV-negative contain the
ABR HIV), and hence, it should be specified that the ABR retains its meaning.

Fig. 1. A screenshot from the application developed for ABR-EXP specification purposes.

In Fig. 1 a screenshot from the web application developed is being presented. The
application directly provides the EXP of an ABR when specified in the document
using the Schwartz and Hearst algorithm; otherwise, it enables users to search in
publicly available sources for the EXP. When all ABRs have been specified, the tool
automatically generates an XML document which includes the provided user data and
the study details (i.e., ID, Title, URL, etc.) which the data came from.

Throughout the ABRs’ definition process, the tool enables users to provide
additional data for each ABR-EXP pair, such as whether the EXP has been specified

Meaning Inference of Abbreviations Appearing in Clinical Studies 129

SLATE’2015

in the document or not and how confident they are for data they provided. The
confidence value is an essential parameter in order to correctly determine the ABRs’
meaning. More precisely, all pairs of ABR-EXP with confidence value medium or
low, including those ABRs the meaning of which was unknown to biomedical
experts, undergo a review process in which one or more medical or clinical experts
are contacted in order for their meaning to be undoubtedly determined.

4 Results Analysis and Main Findings

a) Expansion availability. The software-based analysis of data provided indicated
that there were on average 13.53 distinct ABRs in every clinical study, from which
the 27.25% had been specified in the document whereas the remaining 72.75% had
been provided without their EXP. From this analysis were deliberately excluded both
common Latin ABRs (e.g., i.e., etc.) and Units of measurement (mg, kg, etc.), which
often appear without their EXP, as well as the ABRs which appear in the title of each
section (e.g., MedDRA) and hence are common to all clinical studies.

Concerning specified ABRs, they often followed their EXP within parentheses or
brackets (94%) or vice versa (4%), while only 2% of specified ABRs came from a
different syntactic cue. However, it should be noted that in 98% of the cases where
an ABR was enclosed within parentheses or brackets the EXP was to be found in the
preceding text, while only in 55% of the cases where the ABR was followed by text
or a phrase enclosed within parenthesis or brackets did that text contain the EXP.

In the case of ABRs provided without their EXP, the whole corpus of clinical
studies available at both the EUCTR and CTGV sites was subsequently downloaded
(exceeds a total of 200 thousand documents) and further processed by another
component. This analysis indicated that 70% of the user inferred ABR-EXP had been
specified in another clinical study. For the remaining 30% of user inferred pairs, a
subsequent analysis indicated that the majority of EXPs could be found in
corresponding PubMed [7] articles (i.e., documents in which the same abbreviation
appeared in either title or abstract). However, a small number of ABR-EXP pairs was
not found since they were clinical trial specific (e.g., LSLV: Last Subject, Last Visit),
and hence the corresponding ABRs could either not be found at all or were being used
in the PubMed articles with a different meaning.

b) Pairs classification. The correspondence between the ABR and EXP characters
usually plays an important role for detecting the EXP of acronym-type ABRs. In
order to evaluate this, the ABR-EXP pairs specified in all of the above cases were
further examined and classified in categories based on the correspondence between
ABR characters and EXP tokens (sequence of characters separated by one or more
white spaces). The analysis indicated that they can be divided in three categories, with
a few examples for each one presented in Table 1.

The first category encompasses those ABR-EXP pairs in which all EXP tokens
have contributed in the ABR construction. More precisely, the first character of the
EXP’s token matches the corresponding ABR characters whereas the rest of ABR
characters, if any, do also appear in the EXP tokens with the same order (examples 1-

130 E. Chondrogiannis, V. Andronikou, E. Karanastasis and T. Varvarigou

SLATE’2015

5). The second category encompasses those pairs in which at least one EXP token
does not participate (i.e., the first character) in the ABR construction. In general such
tokens are function words such as articles and prepositions which enable authors to
form grammatically correct human language expressions, but they do not actually add
meaning in a phrase or sentence (examples 7 and 8). However, a considerable number
of such tokens do not belong in this category (examples 9-12).

Table 1. Classification of ABR-EXP along with an example for each one.

ID Abbrev. Expansion (in document) Description / Comments
1 CNS Central Nervous System The ABR consists of the first character of each

EXP token

Ti
gh

tly
 L

in
ke

d

2 CrCl Creatinine Clearance The ABR consists of the first two characters of
each EXP token

3 CVA Cerebrovascular Accident The ABR consists of the first character of each
EXP token along with one additional character
from the first token

4 TZD Thiazolidinedione The first ABR-EXP characters matches, while
the rest ABR characters appear in the EXP token
with the same order

5 LTP2 Lactate Turnpoint 2 The ABR consists of the first character of the
EXP token including the number presented. The
ABR character “P” also appears in the 2nd token

6 SD1 Study Day one The Arabic number “1” matches with English
Word “one” while the rest ABR characters
matches with the first character of EXP tokens

7 ULN Upper Limit , of Normal Tokens “of” (stop word) and “,” (punctuation) do
not contribute in the ABR construction

Lo
os

el
y

Li
nk

ed

8 LVLS Last Visit of the Last
Subject

Tokens “of” and “the” (stop words) do not
contribute in the ABR construction

9 PDE-5 Phosphodiesterase type 5 Token “type” do not contribute in the
abbreviation construction

10 DSM-IV Diagnostic and Statistical
manual of Mental disorders,
4th edition

Tokens “and”, “of” (stop words) , “manual,
“disorder” and “edition” do not contribute in the
abbreviation construction

11 ACDA Acid Citrate Dextrose
solution A

Token “solution” do not contribute in the
abbreviation construction

12 CABG Coronary Artery Bypass
Graft procedure

Token “procedure” do not contribute in the
abbreviation construction

13 EKG Electrocardiogram “EKG” stands for
“Elektrokardiogramm” (German)

Pa
rti

al
ly

 /
N

ot
 L

in
ke

d 14 SUKL State Institute for Drug
Control

“SUKL” stands for
“Státní ústav pro kontrolu léčiv” (Chech)

15 DL Dazit “DL” stands for “Desloratadine”,
“Dazit” is a Trade Name

16 AZT Zidovudine “AZT” stands for “Azidothymidine”,
“Zidovudine” is the INN

17 MDX010 Ipilimumab “MDX-010” is the product code for
“Ipilimumab” (the INN)

18 C15 Blood and lymphatic
diseases

“C15” is the Mesh code for
“Hemic and lymphatic diseases”

The third category includes the pairs in which the ABR has partial or no similarity

with its EXP from a characters point of view, since it comes from another EXP rather

Meaning Inference of Abbreviations Appearing in Clinical Studies 131

SLATE’2015

than the one provided in the document. For instance the EXP provided may be in
English whereas the ABR come from another phrase (being conceptually the same)
expressed in another language (examples 13 and 14). Also, a chemical product has
several names (i.e., chemical name, generic name/s, trade name/s) and hence the ABR
may come from another EXP than the one provided in the document (examples 15
and 16). A special case comprises of codes which often are being arbitrarily assigned
to concepts when being introduced into a coding system. Such codes have been
primarily designed for referencing purposes or communication among software
agents. However, they may still be found in documents such as codes from widely
used classifications systems (e.g., Mesh – example 18) and especially codes assigned
to chemical products before entering in the market (example 17).

Numbers have a distinctive role in the EXP detection process. In general
(excluding codes) they appear in both ABR and EXP. However, they may be in
different forms, including Roman and Arabic numbers, ordinal numbers, percentages
as well as their corresponding phrases in English language (example 6). In example
10 the Roman number is being used in the ABR whereas the corresponding Arabic
number in its EXP. However, it should be noted that the sequence of characters “IV”
is separated from the rest of the ABR characters. The punctuation characters being
used in the ABR (e.g., white spaces or hyphen characters) as well as changes in the
characters format (from upper to lower case) or type (from letter to number) may
point to groups of abbreviation characters that should be examined together.

c) Tokens importance. Concerning the pairs of ABR-EXP that belong to the second
category, it was observed that an ABR can be “tightly” linked with its EXP if, apart
from punctuation characters and function words, one or more tokens are ignored. The
analysis of ignored tokens indicated that, in general, they are those words which are
not so important in comparison to the other EXP tokens. The importance of each
token was measured by taking into account the discrimination power of each one
across the whole corpus of documents (i.e., studies-count). More precisely, the
number of studies each token appeared in was counted (i.e., studies-token-exists) and
accordingly its importance calculated, based on the expression (1). The more frequent
a token appears the less important it is. In order to overcome the morphological
variants of tokens their stem was used based on the Porter stemming algorithm [4].
Also, the importance of tokens was normalized so that it would take values in the
range from 0 (not important) to 1 (very important).

Token-Importance = Logarithm-10 (Studies-Count / Studies-Token-Exists) (1)

In Fig. 2, the importance of tokens being ignored (blue) as well as the importance
of the remaining EXP tokens (red) is being presented. The 98% of tokens being
ignored have importance in the range [0.0–0.6], with their average importance being
close to 0.2. On the other hand, the importance of the remaining EXP tokens covers
the whole range. This, in turn, indicates that in the construction of an ABR, in many
cases, participate tokens that are not so important or informative. However, in the
77% of the cases in which an omission was necessary, the average number of the
importance of tokens being ignored was lower than the average number of the
importance of the remaining EXP tokens, while in almost every case, the most

132 E. Chondrogiannis, V. Andronikou, E. Karanastasis and T. Varvarigou

SLATE’2015

important EXP token had contributed with one or more characters in the construction
of the ABR.

Fig. 2. Classification of the EXP tokens based on their importance.

The above analysis clearly indicates that authors, when constructing an ABR, tend
to ignore the “non-important” tokens. This observation is further supported by the fact
that, in 95% of the cases in which alignment is achieved after ignoring one or more
tokens, the number of ABR characters was 3 or more. In other words, if the authors
had not omitted such tokens, the length of the ABR would have been more than 4 or 5
characters, which in turn it would have been difficult to remember and use in the rest
of the document.

Another important observation is the fact that the importance of tokens ignored is
affected by the length of the ABR as well as the corresponding EXP. More precisely,
while their length is increased, the average number of ignored-tokens importance is
also increased (Fig. 3). Consequently, the authors in order to keep ABR length small,
omit words which in some other cases (e.g., when constructing the ABR of a shorter
phrase) would have not been ignored.

Fig. 3. The average importance of EXP tokens being ignored for each group of ABR.

d) Abbreviation expressions. The analysis of documents indicated that ABRs may
appear in plural form while they may also participate in one or more expressions.

Meaning Inference of Abbreviations Appearing in Clinical Studies 133

SLATE’2015

More precisely, an ABR may be used along with other words (e.g., HIV-positive)
and/or prefixes (e.g., post-PTA) to form compounds, the meaning of which is affected
by the non-ABR components. Based on the examined corpus of documents, 2.1 ABRs
on average participate in an ABR expression. Consequently, it’s essential to detect the
internal ones, which may or may not have been specified in the document. In the latter
case, their EXP should be sought in another source, but it’s more probable to find the
EXP of the internal ABR rather than the whole expression.

Table 2. Dominant ABR Expressions used in Clinical Studies.

Expression Example(s) Expression Example(s)
ABR-positive HIV-positive ABR-induced NRTI-induced
ABR-negative CRIM-negative ABR-specific YMSM-specific
ABR-related ATGL-related, ABR-score FLIE-score, MELD-score
ABR-associated CVC-associated anti-ABR anti-RET, anti-IFN
ABR-based MR-based post-ABR post-PTA, post-CRT
ABR-containing MPA-containing pre-ABR pre-GCRA, pre-TAVR
ABR-like LDL-like, BMS-like non-ABR non-LDL, non-TCC

Table 2 summarizes the “dominant” ABR expressions detected along with a few

examples. In fact, the analysis of tokens highlighted this issue, which imposed the
analysis of the whole corpus of clinical studies through a semi-automatic process.
More precisely, the patterns automatically detected are presented in a descending
order based on their frequency of appearance, while for each one of them the specific
abbreviation from which they are stemming from was recorded. The combination of
two or more ABRs with “and”, “or” operators or their corresponding symbols was
excluded from the list. Also, the explanation of the ABRs expressions presented was
left for our future work.

e) Expansion selection. In order to correctly detect the missing EXP of an ABR, the
possible EXPs should be found and accordingly the appropriate one be selected. As
already mentioned, the 70% of ABRs inferred by the end user had been specified in
another clinical study with the meaning provided. The analysis of the whole corpus of
clinical studies indicates that the corresponding abbreviations are highly ambiguous
with the average number of possible EXPs being close to 7.0. However, the analysis
of the EXPs provided by the end users as well as the possible EXPs detected reveal
that in the 87% of inferred ABR-EXP, the EXP is the dominant one, while in almost
every case the corresponding EXP has been used in more than one document. It
should be noted that the average of EXPs is reduced to 3.1 if the ones being used only
in the document provided are ignored.

For improving the percentage of correctly detected ABR-EXP pairs, the broader
domain in which each expansion is used was further examined, taking into account
the Mesh Terms assigned to each clinical study. More precisely, for each EXP, the
corresponding documents were collected and accordingly a graph was created, based
on the Tree IDs of Mesh Terms assigned to each one as well as their hierarchy. Then,
for each ABR the Tree IDs based on the automatically detected Mesh Terms (e.g.,
from study title) were retrieved and accordingly the corresponding Tree IDs graphs

134 E. Chondrogiannis, V. Andronikou, E. Karanastasis and T. Varvarigou

SLATE’2015

were examined for finding the best matching EXP. The analysis indicated that only
the 85% of EXPs was correctly detected - a little bit lower than in the previous case.

The terms presented in the close vicinity of each EXP were also examined.
Following a similar process, the distinct tokens (i.e., their stem) that appeared in the
same sentence with an ABR were gathered, ignoring punctuation characters, stop
words and numbers. Then, the preceding and following tokens of the ABRs without
EXP were used in the annotated corpus of document for selecting the appropriate
EXP. The EXP selected for each ABR was the one for which the sum of the
importance (finding c) of tokens matches was the maximum. The outcome of this
analysis indicated that the 88% of ABR-EXP inferred were correctly detected. This
approach also proved successful at resolving the meaning of ABR “AR” (a highly
ambiguous ABR with up to 10 different EXPs) to “Allergic rhinitis”, which was not
possible to correctly detect through any of the aforementioned techniques (the
dominant EXP for “AR” was “Androgen Receptor”).

5 Further Discussion and Future Steps

The ABR-EXP detection process is highly affected by errors or inconsistencies which
may appear in the documents in both ABR and EXP. For instance, the authors may
use an ABR, even in the same document, with a different form than the one specified
(e.g., use SDI instead of SD1: Study Day 1). Also, the authors may introduce across
the document similar EXPs, which do not accurately match with each other, since
they may contain one or more additional punctuation characters (e.g., an additional
space or dash) or even have a grammatical error.

Concerning the ABRs mentioned in each document, they were classified in two
broad categories; those specified and those inferred. However, in some cases an ABR
is partially defined in a document, e.g. “HBO2: Hyperbaric O2”, where the ABR
“O2” stands for oxygen (derived from its molecular formula – not mentioned in the
document). Additionally, nested abbreviations’ definitions should be handled
carefully, e.g. “N-methyl-D-aspartate (NMDA) receptor (NMDAR)”.

The meaning of ABRs provided without their EXP can be adequately resolved by
selecting the dominant EXP for the corresponding ABR. However, the number of
correctly detected ABR-EXP pairs can be increased by also taking into account the
text that precedes or follows the ABR. The suggestions made can be further improved
if not only the tokens presented are taken into account, but also the semantic class
which they belong to, including their position towards abbreviation.

The ABR-annotated corpus of documents, that was an outcome of this work, is
available at the following link [13]. However, our intention is the specified ABRs to
be further examined and linked with their corresponding terms from widely used
nomenclatures, in order for their meaning to be precisely specified (e.g., different
semantically equivalent EXPs). Also, the development of a fully-automated system
for the analysis of the whole set of clinical studies is planned, with the scope to create
a repository of recorded EXPs for all ABRs, including the context that each one is
being used within.

Meaning Inference of Abbreviations Appearing in Clinical Studies 135

SLATE’2015

6 Conclusion

The performed analysis of the ABR-annotated corpus of clinical studies indicated that
ABRs are widely used without their EXP. Specifying the appropriate meaning for
each one, presumes the analysis of a larger corpus of documents (not limited to
clinical studies) for detecting the possible EXPs and accordingly selecting the
appropriate one. Tokens have a significant role in the ABR-EXP detection process,
since authors tend to ignore the non-important words, in order to reduce the ABRs’
length. Also, the expressions in which an ABR may participate as well as the text that
proceeds and follows have a distinctive role for selecting the appropriate meaning.

Acknowledgements. This work is being supported by the OpenScienceLink project
[8] and has been partially funded by the European Commission’s CIP-PSP under
contract number 325101. This paper expresses the opinions of the authors and not
necessarily those of the European Commission. The European Commission is not
liable for any use that may be made of the information contained in this paper.

References

1. Gale, W.A., Church, K.W., Yarowsky, D.: One sense per discourse. In: Proceedings of the
workshop on Speech and Natural Language HLT '91, pp. 233-237. New York (1992)

2. Schwartz, S.A., Hearst, A.M.: A Simple Algorithm for Identifying Abbreviation Definitions
in Biomedical Text. In proccedings of PSB, pp. 451-462. (2003)

3. EU Clinical Trials Register, www.clinicaltrialsregister.eu
4. Porter, M.F.: An algorithm for suffix stripping. Program. 40(3), 211-218 (2006)
5. ClinicalTrials.gov, www.clinicaltrials.gov
6. Medical Subject Headings (MeSH), http://www.nlm.nih.gov/mesh/
7. PubMed, http://www.ncbi.nlm.nih.gov/pubmed
8. Karanastasis, E., Andronikou, V., Chondrogiannis, E., Tsatsaronis, G., Eisinger, D., Petrova,

A.: The OpenScienceLink architecture for novel services exploiting open access data in the
biomedical domain. In: Proceedings of PCI '14, pp. 28:1-28:6. ACM, New York (2014)

9. Xu, Y., Wang, Z., Lei, Y., Zhao, Y., Xue, Y.: MBA: a literature mining system for
extracting biomedical abbreviations. BMC Bioinformatics. 9, 10:14 (2009)

10. McCarthy, D., Koeling, R., Weeds, J., Carroll, J.: Finding predominant word senses in
untagged text. In: Proceedings of ACL'04, pp. 280-287. Stroudsburg, PA, USA (2004)

11. Stevenson, M., Guo, Y., Amri, A.A., Gaizauskas, R.: Disambiguation of biomedical
abbreviations. In: Proceedings of BioNLP '09, pp. 71-79, Boulder, Colorado, USA (2009)

12. McInnes, B.T., Pedersen, T., Carlis, J.: Using UMLS Concept Unique Identifiers (CUIs) for
Word Sense Disambiguation in the Biomedical Domain. In: AMIA’07, pp. 533-537 (2007)

13. CT abbreviations-annotated corpus, http://147.102.19.246:8080/AbbrAnnotatedCorpus/
14. Chang, J.T., Schütze, H., Altman, R.B.: Creating an online dictionary of abbreviations from

MEDLINE. J Am Med Inform Assoc. 9(6), 612-20 (2002)
15. Pustejovsky, J., Castaño, J., Cochran, B., Kotecki, M., Morrell, M.: Automatic extraction of

acronym-meaning pairs from MEDLINE databases. Stud Health Tech I. 84(1), 371-5 (2001)
16. Zhou, W., Torvik, V.I., Smalheiser, N.R.: ADAM: another database of abbreviations in

MEDLINE. Bioinformatics. 22(22), 2813-2818 (2006)
17. Park, Y., Byrd, R.J.: Hybrid Text Mining for Finding Abbreviations and their Definitions.

In: Proceedings of EMNLP'01 conference. pp. 126--133 (2001)

136 E. Chondrogiannis, V. Andronikou, E. Karanastasis and T. Varvarigou

SLATE’2015

Experiments on Enlarging a Lexical Ontology

Alberto Simões1,2 & José João Almeida2

1 Centro de Estudos Humańısticos
2 Centro Algoritmi

Universidade do Minho, Braga, Portugal
ambs@ilch.uminho.pt

Abstract. This paper presents two simple experiments performed in
order to enlarge the coverage of PULO, a Lexical Ontology, based and
aligned with the Princeton WordNet. The first experiment explores the
triangulation of the Galician, Catalan and Castillian wordnets, with
translation dictionaries from the Apertium project. The second, explores
Dicionário-Aberto entries, in order to extract synsets from its definitions.
Although similar approaches were already applied for different languages,
this document aims at documenting their results for the PULO case.

1 Introduction

Recently, a huge effort has been done to boost the development of wordnet
clones for different languages. Portuguese is not an exception. There are different
initiatives to create lexical ontologies, linked or not with the original Princeton
WordNet [9] (WordNet.Pr). Examples of such initiatives are Onto.PT [4], PA-
PEL [5], TeP [8] or Open WordNet-PT [10]. Along with these, another initiative
born some months ago: the Portuguese Unified Lexical Ontology (PULO) [12].
It aims at integrating different existing resources into a structure aligned with
WordNet.Pr. Recently a joint effort on comparing these projects’ history, goals
and statuses [7], lead some teams in the direction of cooperation. Nevertheless,
each project team continues their own initiatives, enriching and enlarging their
resources.

The same happens with PULO. This document describes two experiments
performed with the objective of enlarging the number of variants3. The kind of
experiments are, somehow, similar to some of the previous work, done in order
to bootstrap PULO [12] (as we also triangulated three different wordnets, but
using probabilistic translation dictionaries), to some of the approaches used to
expand GalNet [3], and to create Onto.PT [4]. Although the idea is not new,
the thorough description of the process and it’s brief evaluation is relevant for
future initiatives with other languages.

This short article includes two main sections: section 2 describes the exper-
iment approaches and used resources, while section 3 gives some measures on
the quality of the methods application. Finally, it concludes with some brief
discussion of the results and future work.
3 This article will use the term variant to refer to one of the synonyms of a synset.

IV Symposium on Languages Applications and Technologies Pages 137–142
18th and 19th June, Madrid, Spain 978-84-606-8762-7

2 Experiments Description

Before running these experiments, PULO included a total of 18.689 variants,
distributed by 17.871 synsets (meaning most synsets include only one variant).
Table 1 shows how these variants are distributed by morphological category.

Table 1. Distribution of the 18.689 variants prior to the enlargement experiments.

Nouns Adjectives Verbs Adverbs Total

Variants 10.421 3.441 4.283 544 18.689

The next subsections describe the two experiments. The first one is based in
the triangulation of the Catalan, Galician and Castillian wordnets using trans-
lation dictionaries. The second one explores Dicionário-Aberto [11], an open and
free definitions dictionary.

2.1 Experiment I: Triangulating Iberian Wordnets

This first experiment uses the wordnets available through Multilingual Cen-
tral Repository [6], and some translation dictionaries obtained from the Aper-
tium [2] project. Given the reduced number of dictionaries including Portuguese,
only the Catalan, Galician and Castillian languages were used. Table 2 shows
the sizes for these three wordnets.

Table 2. Summary of sizes for the three used wordnets.

Nouns Adjectives Verbs Adverbs Total

Galician
Synsets 18.850 5.092 1.541 349 25.832
Variants 25.205 8.050 4.145 420 37.820

Catalan
Synsets 36.460 4.148 5.424 1 46.033
Variants 51.606 7.679 11.577 2 70.864

Castillian
Synsets 26.594 5.180 6.251 677 38.702
Variants 39.142 6.967 10.829 1.051 57.989

Regarding the translation dictionaries, Table 3 summarizes their sizes. As can
be seen, these are quite small dictionaries. This fact was the main reason why the
bootstrapping approach [12] used probabilistic translation dictionaries that have
a broader coverage. Also, note that most entries in this dictionary have only one
translation, reducing the translation ambiguity (which is somewhat desired for
a machine translation dictionary, but reduces its applicability for other tasks).

The used algorithm is quite simple. For each synset in the database, that
includes at least one variant in any of the three languages, it:

1. Creates a multiset SL that includes all translations obtained by the transla-
tion of all variants for language L. Note that different variants can translate
to the same word in Portuguese, so, the multiset tracks the number of times
that word was obtained.

138 Alberto Simões and José João Almeida

SLATE’2015

Table 3. Translation dictionaries sizes.

Lang. Pair Nr. Entries Max Nr. Trans. Avg. Nr. Trans.

GL–PT 11.003 4 1.07
CA–PT 6.510 7 1.11
ES–PT 12.742 6 1.07

2. Compute the multiset S = SGL ∪ SCA ∪ SES . This means that, if a Por-
tuguese word was obtained by translating just one variant for each of the
source languages, it would have a multiplicity of three. On the other hand, if
three variants for just one language generated a Portuguese word, that was
not obtained from any of the other languages, its multiplicity would be, as
well three. Not giving extra weight if the word was obtained from different
languages or every time from the same language was decided in order to keep
the algorithm simple.

3. Filter the multiset S, removing all Portuguese variants with a multiplicity
of just one. To define this cut line, each variant was checked against current
variants in PULO. Figure 1 shows this test. Bars at the left represent variants
found in PULO, while bars at the right represent new variants. Given the
huge amount of new variants with a multiplicity of 1, it was decided to ignore
them (trying to improve accuracy).

Fig. 1. Number of candidate variants already existing in PULO (left bars) against the
new candidates (bars at the right), distributed by their multiplicity in multiset S.

4. The bootstrapping approach for PULO used dictionaries obtained from Eu-
ropean Portuguese corpora with its old orthography4. The dictionaries from
Apertium used, essentially, Brazilian orthography that, curiously, is now the
correct form for European Portuguese. With that in mind, a simple tool was
used to remove variants written in the old orthography, and adding the re-

4 Orthography prior to the 1990 agreement, that was officiated in 2008 by the Por-
tuguese Government, and still being, progressively, adopted in Portugal.

Experiments on Enlarging a Lexical Ontology 139

SLATE’2015

spective new orthography in case it was not yet present. This process was
performed using JSpell morphological analyzer [1].

This process created a total of 7.229 new variants, and removed 261 of existing
variants with the old orthography. Table 4 summarizes the distribution of PULO
variants by morphological category after this experiment.

Table 4. Distribution of the 25.657 variants after the first enlargement experiment.

Nouns Adjectives Verbs Adverbs Total

Variants 14.062 4.825 6.172 598 25.657

2.2 Experiment II: Synset Extraction from Definitions Dictionary

This second experiment was prepared already with the expectation of a big
amount of false positives. Nevertheless, there was interest on confirm that ex-
pectation. The main idea was to use Dicionário-Aberto (DA) [11] definitions to
construct synsets. DA is partially encoded in TEI5.

DA definitions are stored in def XML elements, with the new line signaling
the change of sense6. Although XML should ignore spaces and new lines, this
decision was taken during the dictionary encoding process for simplicity. Each
sense line can include very different types of information. The most common is
a standard definition, explaining the concept. In other cases, there are exam-
ples, or see also references. But there is another kind of definition that is quite
interesting for the PULO enlargement process. Some lines include a set of syn-
onyms separated by a semicolon. Thus, this second experiment finds lines in DA
that are only a sequence of terms separated by a semicolon. For each of these
sequences, the list of synonyms, together with the entry head word, are stored.

Exploring the 128.521 entries in DA, 4.842 synsets were found. These synsets
have from 3 to 7 synonyms, with an average of 3.14 synonyms per synset.

In order to map these synsets to PULO synsets, a simple heuristic was used:
find an intersection between the synonyms from the two sources that includes, at
least, two variants. This means that for a synset obtained from DA 〈s1, s2, s3〉,
si will be suggested as a candidate if there is a synset S in PULO that contains
sj and sk with i 6= j 6= k.

This process suggested 1.150 additions. Given this dictionary is quite noisy,
and includes a lot of words with old orthography (previous to the 1945 agree-
ment), these suggestions were not added automatically to PULO.

5 Text Encoding Initiative XML schema, that includes notation to encode different
kind of resources from simple books to corpora or dictionaries.

6 This distinction is, of course, of the responsibility of the original lexicographer.

140 Alberto Simões and José João Almeida

SLATE’2015

3 Experiments Evaluation

Both evaluations reported here were performed by sampling, given there is no
gold standard that can be used to evaluate these candidates, neither the manual
power needed to fully (manually) evaluate all candidates from both experiments.

For the second experiment, all suggestions need to be evaluated before being
added to PULO. Nevertheless, there was no time to complete that task yet.

3.1 Experiment I

For the first experiment, 200 of the added variants were chosen randomly.
This sample included 101 names, 39 adjectives, 2 adverbs and 58 verbs.

This evaluation resulted in 152 correct variants, 40 incorrect variants, and 8
variants were classified as ambiguous, as it was decided not to delete them, but
that decision is not consensual. So, this experiment accuracy is, by sampling7,
76%. Table 5 presents these results distributed by morphologic category.

Table 5. Distribution of correct, incorrect and ambiguous variants distributed by
morphologic category for first experiment.

Nouns Adjectives Verbs Adverbs Total

Correct 82 (81%) 27 (69%) 41 (71%) 2 (100%) 152 (76%)
Incorrect 17 (17%) 9 (23%) 14 (24%) 0 (0%) 40 (20%)

Ambiguous 2 (2%) 3 (8%) 3 (5%) 0 (0%) 8 (4%)

Total 101 39 58 2 200

3.2 Experiment II

For the second experiment, 200 of the candidate variants where chosen ran-
domly and manually evaluated. In this test, only 115 variant candidates were
marked for acceptance, while 74 were marked as wrong, and 11 as ambiguous.
Table 6 shows the distribution of these candidates by morphologic category. The
accuracy8 on this experiment was 58%.

4 Conclusions

This article reports two experiments on expanding PULO coverage. Although
the used methods are not new, the experiments have shown that these methods
can get acceptable accuracy. Even the second method, that used a very noisy
and old dictionary (from 1913), could suggest a good set of new variants. Never-
theless, when dealing with semantics, decisions are not consensual, and probably
other researchers would accept or reject different number of entries.

7 Given the obtained accuracy and the lack of human resources for a through valida-
tion, the authors decided to include the obtained variants without further analysis.

8 Given the low accuracy and the small number of proposed variants, the authors
decided to perform a manual validation prior to their incorporation into PULO.

Experiments on Enlarging a Lexical Ontology 141

SLATE’2015

Table 6. Distribution of correct, incorrect and ambiguous variants distributed by
morphologic category for second experiment.

Nouns Adjectives Verbs Adverbs Total

Correct 56 (62%) 28 (56%) 31 (52%) 0 115 (58%)
Incorrect 28 (31%) 19 (38%) 27 (45%) 0 74 (37%)

Ambiguous 6 (7%) 3 (6%) 2 (3%) 0 11 (5%)

Total 90 50 60 0 200

Acknowledgements: Thanks to Nuno Carvalho for the proofreading. This work
has been partially supported by FCT - Fundação para a Ciência e Tecnologia
within the Project Scope UID/CEC/00319/2013.

References

1. Almeida, J.J., Pinto, U.: Jspell – um módulo para análise léxica genérica de lin-
guagem natural. In: Actas do X Encontro da Associação Portuguesa de Lingúıstica.
pp. 1–15. Évora 1994 (1995)

2. Forcada, M.L.: Apertium: traducció automàtica de codi obert per a les llengües
romàniques. Linguamática 1(1), 13–23 (May 2009)

3. Gómez Guinovart, X., Clemente, X.M.G., Pereira, A.G., Lorenzo, V.T.: Galnet:
WordNet 3.0 do galego. Linguamática 3(1), 61–67 (2011)

4. Gonçalo Oliveira, H., Gomes, P.: Onto.PT: recent developments of a large public
domain portuguese wordnet. In: Proceedings of the 7th Global WordNet Confer-
ence. pp. 16–22 (2014)

5. Gonçalo Oliveira, H., Santos, D., Gomes, P., Seco, N.: PAPEL: A dictionary-based
lexical ontology for Portuguese. In: Proceedings of Computational Processing of
the Portuguese Language - 8th International Conference (PROPOR). vol. 5190,
pp. 31–40. Springer (2008)

6. Gonzalez-Agirre, A., Laparra, E., Rigau, G.: Multilingual Central Repository ver-
sion 3.0. In: Proceedings of the 8th International Conference on Language Re-
sources and Evaluation (LREC’12). pp. 2525–2529. ELRA (2012)

7. Gonçalo Oliveira, H., de Paiva, V., Freitas, C., Rademaker, A., Real, L., Simões,
A.: As Wordnets do Português. In: Simões, A., Barreiro, A., Santos, D., Sousa-
Silva, R., Tagnin, S. (eds.) Lingúıstica, Informática e Tradução: Mundos que se
Cruzam, vol. 7, pp. 397–424 (March 2015)

8. Maziero, E.G., Pardo, T.A.S., Felippo, A.D., Dias-da-Silva, B.C.: A Base de Da-
dos Lexical e a Interface Web do TeP 2.0. In: VI Workshop em Tecnologia da
Informação e da Linguagem Humana. pp. 390–392 (2008)

9. Miller, G.A.: WordNet: A lexical database for English. Communications of the
ACM 38, 39–41 (1995)

10. Rademaker, A., Paiva, V.D., de Melo, G., Coelho, L.M.R., Gatti, M.:
OpenWordNet-PT: A Project Report. In: Proceedings of the 7th Global Word-
Net Conference. pp. 383–390 (2014)

11. Simões, A., Farinha, R.: Dicionário Aberto: um recurso para processamento de
linguagem natural. Vice-Versa 16, 159–171 (December 2011)

12. Simões, A., Guinovart, X.G.: Bootstrapping a portuguese wordnet from galician,
spanish and english wordnets. Advances in Speech and Language Technologies for
Iberian Languages 8854, 239–248 (2014)

142 Alberto Simões and José João Almeida

SLATE’2015

Using Unstructured Profile Information for
Gender Classification of Portuguese and English

Twitter Users

Marco Vicente1,2, Joao P. Carvalho1,3 and Fernando Batista1,2

1 INESC-ID, Lisboa, Portugal
http://www.l2f.inesc-id.pt

2 ISCTE-IUL - Instituto Universitário de Lisboa, Lisboa, Portugal
3 Instituto Superior Técnico, Universidade de Lisboa, Portugal

Abstract. This paper reports experiments on automatically detecting
the gender of Twitter users, based on unstructured information found
on their Twitter profile. A set of features previously proposed is evalu-
ated on two datasets of English and Portuguese users, and their perfor-
mance is assessed using several supervised and unsupervised approaches,
including Naive Bayes variants, Logistic Regression, Support Vector Ma-
chines, Fuzzy c-Means clustering, and k-means. Results show that fea-
tures perform well in both languages separately, but even best results
were achieved when combining both languages. Supervised approaches
reached 97.9% Accuracy, but Fuzzy c-Means also proved suitable for this
task achieving 96.4% Accuracy.

Key words: Twitter users; gender detection; fuzzy c-Means; supervised
methods; unsupervised methods.

1 Introduction

The growth of social networks has produced massive amounts of data. This
user-generated information provides clues about users’ opinions, daily routines,
reaction to events, among other. Twitter, with about 500 million user-generated
tweets per day, provides an opportunity for social networking studies [4], and has
become the subject of studies seeking to understand public opinion [7]. Unlike
other social networks, a user name is the only required field when creating a
Twitter profile. Other relevant information such as gender or age, is optional.
Nevertheless, the user profile includes optional text attributes that can be used.
Previous studies support the hypothesis that users tend to choose real names
more often than other forms [2] and, in fact, gender information is most of the
times provided either wittingly or unwittingly, for example, in the screen name
(e.g. “johndoe95” or “marianacruz”) or in the user name (e.g. “John Doe the
best :)” or “the macho man!!!”).

The problem of gender detection in Twitter using the user profile informa-
tion has been rarely addressed in the literature. However, a related Natural

IV Symposium on Languages Applications and Technologies Pages 143–148
18th and 19th June, Madrid, Spain 978-84-606-8762-7

Language Processing (NLP) problem consists of deciding whether the author
of a text is male or female. Such a problem is known as gender detection or
classification, and is often addressed [11, 8]. The problem of gender detection on
Twitter has been addressed by Rao et al. [16]. The work examined Tweets written
in English, using Support Vector Machines with character ngram-features and
sociolinguistic features like emoticons use or alphabetic character repetitions.
They reported an accuracy of 72.3% when combining ngram-features with soci-
olinguistic features. The state-of-the-art study reported by Burger et al. [6] uses
a large multilingual corpora, including approximately 184k users labelled with
gender, 3.3 million tweets for training, and 418k tweets for testing. They used
SVMs, Naive Bayes and Balanced Winnow2 with word and character N-grams
as features. When combining tweet texts with profile information (description,
user name and screen name), they achieved 92% of accuracy.

This paper addresses the task of automatically detecting the user’s gender
based on the unstructured textual information found on the user’s profile, both
in the screen name and the user name. The paper describes a set of features
for gender classification proposed in our previous study [17], which rely on the
user’s profile unstructured textual information. The main contributions are two-
fold: Firstly, we assess the performance of the features using several supervised
and unsupervised methods for a Portuguese dataset, in addition to the English
dataset used in our previous study. Secondly, we show that the proposed features
are compatible with both languages, and that results are improved when merg-
ing both datasets. We notice that using unsupervised methods, the increasing
amount of data has positive impact on the results. The features can be used to
extend gender labelled datasets for researchers.

This paper is organized as follows: Section 2 characterizes the data, describes
the proposed features and describes our golden set of manually labelled data.
Section 3 describes experiments and reports the corresponding results. Section
4 presents the conclusions and prospects about the future work.

2 Data and Features

Experiments performed in this paper use an English and a Portuguese dataset
of Twitter users. The English dataset was extracted from one month of tweets
collected during December 2014, using the Twitter streaming/sample API. The
data has been restricted to English geolocated tweets, either from the United
States or from the United Kingdom, totaling 296506 unique users. The Por-
tuguese dataset is a subset of the data described in Brogueira et al. [5], and
correspond to a database of Portuguese users, restricted by users that have
tweeted during October of 2014 in Portuguese language, and geolocated in the
Portuguese mainland.

In order to automatically associate names that can be found in the user’s
profile with the corresponding gender, we have compiled a dictionary of English
names and a dictionary of Portuguese names. Both dictionaries contain gender
and number of occurrences for each of the names, and focus on names that

144 Marco Vicente, João Carvalho and Fernando Batista

SLATE’2015

are exclusively male or female, since unisex names can be classified as male
or female. The English names dictionary contains about 8444 names. It was
compiled using the list of the most used baby names from the United States
Social Security Administration. The dictionary is currently composed of 3304
male names and 5140 female names. The Portuguese names dictionary contains
1659 names, extracted from [1]. Their work is based on the extraction of names
both from official institution lists and from previous corpora. The dictionary is
currently composed of 875 male names and 784 female names.

Our experiments use the features proposed in a previous work [17], which
are extracted with the dictionary of names described previously. The profile
information is normalized for repeated vowels (e.g.: “eriiiiiiiiic“→“eric“) and
“leet speak” (e.g.: “3ric“→“eric“). After finding one or more names in the user
name or screen name, we extract the applicable features from each name by
evaluating elements, such as “case”, “boundaries”, “separation” and “position”.
The final model uses 192 features. Each element increases the feature granularity.
Considering the screen name “jill gaines”, three names are extracted: “aine”,
“ines” and “jill”, but only “jill” has both boundary features, since it starts the
string and ends with a common boundary. Example of a feature for such screen
name: a name (jill) can be extracted at the initial position, is separated by a
boundary, and after correcting case, it exists in the dictionary, and is male.
About 243522 English users (82%) and 15828 Portuguese users (58%) trigger at
least one gender feature.

In order to perform the evaluation, we manually labelled a randomly selec-
tion of Portuguese users with gender information and used the existing labelled
English dataset [17]. The corresponding gender was assigned by manually ana-
lyzing and validating users based on their user name/screen name, their profile
picture and checking if associated blogging websites corresponded in gender. All
users in our labelled datasets contain at least a sequence that matches a name
in our dictionary of names. The English labelled dataset has 748 users: 330 male
users and 418 female users. The Portuguese labelled dataset has 716 users: 249
male users and 467 female users. The majority of the users are female, which is
consistent with the work of Heil et al. [9] that performed a study of correlation
between name and gender, and estimates that 55% of Twitter users are female.

3 Experiments and results

This section describes our experiments using the proposed features to both
datasets separately and combined, using different supervised and unsuper-
vised approaches. The supervised methods include: Multinomial Naive Bayes
(MNB) [14], a variant of Naive Bayes, Logistic Regression [12], and Support Vec-
tor Machines (SVM) [15, 10]. The unsupervised methods include Fuzzy c-Means
clustering (FCM) [3] and k-means [13]. The fuzzy logic toolkit for SciPy3 was
used for implementing FCM, and all the other methods were applied through

3 SciPy Fuzzy Logic Toolkit. https://github.com/scikit-fuzzy/scikit-fuzzy

Using Unstructured Profile Information for Gender Classification of PT and EN Twitter users 145

SLATE’2015

Table 1. Classification results for supervised and unsupervised methods.

English Portuguese English + Portuguese
Accuracy kappa Accuracy kappa Accuracy kappa

Logistic Regression 93.7% 0.87 97.6% 0.95 96.3% 0.92
Multinomial Naive Bayes 97.2% 0.94 98.3% 0.96 97.9% 0.96
Support Vector Machines 96.4% 0.93 97.8% 0.95 97.4% 0.95

kMeans clustering 67.3% 70.1% 67.8%
Fuzzy c-Means 96.0% 94.4% 96.4%

Weka4, a collection of open source machine learning algorithms and a collection
of tools for data pre-processing and visualization.

While the supervised based methods use labelled data to build a model, that
is not the case of unsupervised methods, which group unlabelled data into clus-
ters. For that reason, we will first describe experiments using labelled data only,
and then will extend the analysis to all the data, but restricting the experiments
to unsupervised methods only. Experiments using supervised methods use the
labelled data for training and used a 5-fold cross-validation. Experiments us-
ing unsupervised methods use all data for creating two different clusters, the
labelled data was used for validation, and each cluster was assigned to the class
with more elements from that cluster. In terms of setup, k-means was set to
use the Euclidean distance, centroids are computed as a mean, and the seed
was set to 10. In order to use the FCM clustering algorithm, the data has been
converted into a matrix of binary values, and we have used 1000 iterations, and
the Euclidean distance. All experiments consider binary features.

Results achieved with each one of the methods in the task of distinguish-
ing between male and female users are summarized in Table 1. The first 3 rows
show the performance for supervised methods. Results from the last two columns
were achieved by combining both the English and the Portuguese labelled sub-
sets. MNB achieved the best performance for both languages, and achieves even
better performance for the merged subset of users, achieving about 98% accu-
racy, proving that datasets can be combined and that features are compatible
with the two languages. The performance achieved suggests that the proposed
features can be suitable to discriminate the user’s gender for both languages.
The last two rows of the table summarizes the performance for unsupervised
methods. FCM obtains the correct gender for about 96.0% of the English users
and about 94.4% of the Portuguese users when all the data is used. k-means
achieves a much lower performance for both languages. The last column of the
table shows the results when English and Portuguese data are combined. With
such dataset, FCM achieves the best results so far, outperforming individual
results obtained for each language.

Our proposed features compare well with the performance achieved by other
state-of-the art research, despite being applied to only about 82% of English
users. For example, Burger et al. [6] uses the winnow algorithm with n-grams

4 Weka version 3-6-8. http://www.cs.waikato.ac.nz/ml/weka

146 Marco Vicente, João Carvalho and Fernando Batista

SLATE’2015

75%$

80%$

85%$

90%$

95%$

100%$

5$ 10$ 15$ 16$ 20$ 50$ 100$ 150$ 200$

Ac
cu
ra
cy
'

thousands'of'users'

Portuguese$

English$

Fig. 1. Impact of the amount of data on the performance, for Portuguese and English.

extracted from the user’s full name and obtain 89.1% accuracy for gender detec-
tion.

We have performed additional experiments in order to assess the impact of
using increasing amounts of data. Figure 1 shows the impact of the amount of
data on the performance of FCM, revealing that it has positive impact until
reaching the 50k users. Above that threshold, the accuracy tends to remain
stable, which may be due to our relatively restricted set of users.

4 Conclusions and future work

We have described an approach to automatically detect the gender of Twitter
users, using unstructured profile information. A number of name related features
is evaluated on a dataset of about 244K English users and a dataset of about 16k
Portuguese users. Different supervised and unsupervised approaches are used to
assess the performance of the proposed features. The proposed features proved to
be good for discriminating the user’s gender in Twitter, achieving about 97.9%
accuracy using a supervised approaches, and about 96.4% accuracy using the
unsupervised approach based on Fuzzy c-Means, which also proved to be very
suitable for this task. Our features proved to be compatible between the English
and Portuguese datasets of Twitter users. Experiments show that by combin-
ing datasets of English and Portuguese users, the performance can be further
increased. The performance of Fuzzy c-Means significantly increased when more
data was used for learning the clusters. Above 50k users, the performance sta-
bilizes, probably to the relatively small amount of labelled data. Fuzzy c-means
proved to be an excellent choice for the gender detection on Twitter since: i)
it does not require labelled data, which is relevant when dealing with Twitter;
ii) its performance increases as more data is provided; and iii) it achieves a
performance almost similar (1.5% lower) to the best supervised method.

Future work will encompass the creation of extended labelled datasets in a
semi-automatic fashion, based on an automatic annotation provided by our pro-
posed features. Such extended labelled datasets will make it possible to associate
the textual content provided by the users with their gender and create gender
models, purely based on the text contents. Such models, based on huge amounts
of data, can then be adapted and used in a cross-domain scenario.

Using Unstructured Profile Information for Gender Classification of PT and EN Twitter users 147

SLATE’2015

Acknowledgements. This work was supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) under project PTDC/IVC-
ESCT/4919/2012 and funds with reference UID/CEC/50021/2013.

References

1. Baptista, J., Batista, F., Mamede, N.J., Mota, C.: Npro: um novo recurso para o
processamento computacional do português. In: XXI Encontro APL (Dec 2005)

2. Bechar-Israeli, H.: From <bonehead>to <clonehead>: Nicknames, play, and iden-
tity on internet relay chat. Computer-Mediated Communication 1(2) (1995)

3. Bezdek, J.C., Ehrlich, R., Full, W.: Fcm: The fuzzy c-means clustering algorithm.
Computers and Geosciences 10(2–3), 191 – 203 (1984)

4. Brogueira, G., Batista, F., Carvalho, J.P., Moniz, H.: Portuguese geolocated tweets:
An overview. In: Proceedings of the International Conference on Information Sys-
tems and Design of Communication. pp. 178–179. ISDOC ’14, ACM, New York,
NY, USA (2014), http://doi.acm.org/10.1145/2618168.2618200

5. Brogueira, G., Batista, F., Carvalho, J.P., Moniz, H.: Expanding a database of
portuguese tweets. In: 3rd Symp. on Languages, Applications and Technologies
SLATE’14. OpenAccess Series in Informatics (OASIcs), vol. 38, pp. 275–282 (2014)

6. Burger, J.D., Henderson, J., Kim, G., Zarrella, G.: Discriminating gender on twit-
ter. In: Proceedings of the Conference on Empirical Methods in Natural Language
Processing. pp. 1301–1309. Association for Computational Linguistics (2011)

7. Carvalho, J.P., Pedro, V., Batista, F.: Towards intelligent mining of public so-
cial networks’ influence in society. In: IFSA World Congress and NAFIPS Annual
Meeting (IFSA/NAFIPS). pp. 478 – 483. Edmonton, Canada (June 2013)

8. Goswami, S., Shishodia, M.: A fuzzy based approach to stylometric analysis of
blogger’s age and gender. In: Hybrid Intelligent Systems (HIS), 2012 12th Interna-
tional Conference on. pp. 47–51 (Dec 2012)

9. Heil, B., Piskorski, M.: New twitter research: Men follow men and nobody tweets.
Harvard Business Review 1, 2009 (2009)

10. Keerthi, S., Shevade, S., Bhattacharyya, C., Murthy, K.: Improvements to platt’s
smo algorithm for svm classifier design. Neural Computation 13(3), 637–649 (2001)

11. Koppel, M., Schler, J., Argamon, S.: Computational methods in authorship attri-
bution. Journal of the American Society for information Science and Technology
60(1), 9–26 (2009)

12. Le Cessie, S., Van Houwelingen, J.C.: Ridge estimators in logistic regression. Ap-
plied statistics pp. 191–201 (1992)

13. MacQueen, J.: Some methods for classification and analysis of multivariate obser-
vations (1967), http://projecteuclid.org/euclid.bsmsp/1200512992

14. McCallum, A., Nigam, K., et al.: A comparison of event models for naive bayes
text classification. In: AAAI-98 workshop on learning for text categorization. vol.
752, pp. 41–48 (1998)

15. Platt, J., et al.: Fast training of support vector machines using sequential minimal
optimization. Advances in kernel methods—support vector learning 3 (1999)

16. Rao, D., Yarowsky, D., Shreevats, A., Gupta, M.: Classifying latent user attributes
in twitter. In: Proceedings of the 2nd international workshop on Search and mining
user-generated contents. pp. 37–44. ACM (2010)

17. Vicente, M., Batista, F., Carvalho, J.P.: Twitter gender classification using user
unstructured information. In: FUZZ-IEEE 2015, IEEE International Conference
on Fuzzy Systems. IEEE Xplorer, Istanbul, Turkey (Accepted)

148 Marco Vicente, João Carvalho and Fernando Batista

SLATE’2015

The Application of Grammar Inference to
Software Language Engineering

Marjan Mernik

University of Maribor, Slovenia
marjan.mernik@uni-mb.si

Abstract. There are many problems whose solutions take the form of
patterns that may be expressed using grammars (e.g., speech recognition,
text processing, genetic sequencing, programming language development,
etc.). Construction of these grammars is usually carried out by computer
scientists working with domain experts. Grammar inference (GI) is the
process of learning a grammar from examples, either positive (i.e., the
pattern should be recognized by the grammar) and/or negative (i.e., the
pattern should not be recognized by the grammar). This talk will present
the application of grammar inference to software language engineering,
including recovery of domain-specific language (DSL) specifications from
example DSL programs and recovery of a meta model from instance
models which have evolved independently of the original meta model.
Recent advances in semantic inference will be presented as well.

Biography. Received the M.Sc. and Ph.D. degrees in computer science
from the University of Maribor in 1994 and 1998, respectively. He is
currently Professor of Computer Science at the University of Maribor,
Slovenia. He is also Visiting Professor of Computer and Information Sci-
ences at the University of Alabama at Birmingham, and at the University
of Novi Sad, Faculty of Technical Sciences, Serbia. His research interests
include programming languages, compilers, domain-specific (modeling)
languages, grammar-based systems, grammatical inference, and evolu-
tionary computations. He is a member of the IEEE, ACM, EAPLS,
and the Editor-In-Chief of Computer Languages, Systems and Struc-
tures journal, as well as the Associate Editor of Applied Soft Computing
journal.

IV Symposium on Languages Applications and Technologies Pages 149–150
18th and 19th June, Madrid, Spain 978-84-606-8762-7

150 Marjan Mernik

SLATE’2015

Combining Processing with Racket

Hugo Correia and António Menezes Leitão

INESC-ID, Instituto Superior Técnico
Universidade de Lisboa

Rua Alves Redol 9
Lisboa, Portugal

{hugo.f.correia,antonio.menezes.leitao}@tecnico.ulisboa.pt

Abstract. Processing is a programming language created to teach pro-
gramming in a visual context. Despite its success, Processing remains a
niche language with limited applicability in the architectural field, as no
Computer-Aided Design (CAD) application supports Processing. This
work presents an implementation of Processing for the Racket platform,
that transforms Processing code into semantically equivalent Racket source
code. Our Processing implementation is developed as a Racket module
language for interoperability with Racket and other module languages
of Racket’s language ecosystem. Our implementation allows us to take
advantage of Rosetta, a Racket library that provides access to several
CAD back-ends (e.g. AutoCAD, Rhinoceros, SketchUp). As a result, ar-
chitects and designers can take advantage of our implementation to use
Processing with their favourite CAD application.

Keywords: Processing, Racket, Compilers, Interoperability

1 Introduction

Processing [1] is a programming language and development environment created
to teach programming in a visual context. The language has grown over the
years, creating a community where users can share their artistic works. Many
examples and educational materials are available to newcomers, reducing their
effort to learn the language. Moreover, Processing offers a wide range of 2D
and 3D drawing primitives, as well as an Integrated Development Environment
(IDE) that provides tools to programmatically create innovative designs.

Nonetheless, Processing is a niche programming language with limited appli-
cability in the architectural field, as architects depend on traditional heavyweight
CAD applications (e.g. AutoCAD, Rhinoceros 3D, etc), that provide APIs tai-
lored for that specific CAD tool. Unfortunately, no CAD application allows users
to write scripts in Processing. As a result, architects that have learnt Processing
cannot use the language or any of the publicly available examples to program in
the context of their favourite CAD tool.

On the other hand, Racket [2] is a descendent of Scheme, which encour-
ages developers to tailor their environment to project-specific needs, offering an

IV Symposium on Languages Applications and Technologies Pages 151–162
18th and 19th June, Madrid, Spain 978-84-606-8762-7

ecosystem that allows the creation of new languages and that has direct interop-
erability with Racket libraries. For instance, Rosetta [3] is a Generative Design
tool built on top of Racket, that encompasses Racket’s philosophy of using dif-
ferent languages. Rosetta allows programmers to generate 2D and 3D geometry
in a variety of CAD applications, namely AutoCAD, Rhinoceros3D, SketchUp,
and Revit, using several programming languages, such as JavaScript, AutoLISP,
Racket, and Python. Furthermore, Racket offers a pedagogic IDE, DrRacket,
which can be adapted to support new module languages of the Racket ecosys-
tem.

Our solution is to implement a source-to-source compiler that translates Pro-
cessing code to semantically equivalent Racket code, enabling architects to pro-
totype designs using Processing in a CAD tool. Moreover, as Racket encourages
developers to use and create different languages within the Racket ecosystem
[4], we have developed an interoperability mechanism to access Racket libraries
and to combine Processing with scripts written in other languages of the Racket
ecosystem, such as Python [5] or Typed Racket [6].

2 Processing

Processing was developed at MIT media labs and was heavily inspired by the De-
sign by Numbers [7] project. The language was created to teach computer science
to artists and designers with no previous programming experience. Processing
has grown over the years with the support of an academic community, which has
written several educational materials, demonstrating how programming can be
used in the visual arts.

Processing is built on Java, but presents some changes to simplify the lan-
guage. For instance, in Java, developers have to implement a large set of arte-
facts to develop simple examples, namely a public class that implements public
methods and a static main method. These constructs bring an initial overhead
and verbosity for novice programmers, which are cumbersome for beginners that
want to quickly try out new ideas. To solve this problem, Processing allows users
to write simple scripts (i.e. simple sequences of statements) that do not have the
verbosity of Java, thus enabling them to quickly create new designs.

The Processing language introduces the notion of a sketch, which is used
to organize source code. A sketch can operate in one of two distinct modes:
Static or Active. Static mode supports simple Processing scripts, such as simple
statements and expressions. Active mode allows users to implement their sketches
using more advanced features of the language. If a function or method definition
is present, the sketch is considered to be in Active mode. Within each sketch,
Processing users can define two functions to aid their design process: setup

and draw. On one hand, the setup function is called once when the program
starts. In setup the user can define initial environment properties and execute
initialization routines needed to create the design. On the other hand, the draw

function runs after setup and executes the code to draw the design. The control

152 Hugo Correia and António Menezes Leitão

SLATE’2015

flow is simple: first setup is executed, setting-up the environment; followed by
draw called in a loop, rendering the sketch until it is stopped by the user.

Moreover, Processing offers users a set of tools that are specially tailored for
visual artists. For instance, 2D and 3D drawing primitives are made available,
rendering designs in different 2D and 3D rendering environments. Processing also
offers a simple but effective development environment called the PDE (Process-
ing Development Environment), where users can develop their programs using a
tabbed editor with IDE services such as syntax highlighting and automatic code
formatting.

3 Related Work

The following section presents two major systems that influenced our work, and
an analysis of their main features.

3.1 Processing.js

Processing.js [8] is a JavaScript implementation of Processing for the Web that
enables developers to create scripts in Processing or JavaScript. Using Process-
ing.js, developers can use Processing’s approach to design 2D and 3D geometry
in a HTML5 compatible browser. Processing.js uses a custom-purpose JavaScript
parser, that parses both Processing and JavaScript code, translating Processing
code to JavaScript while leaving JavaScript code unmodified. Moreover, Pro-
cessing.js implements Processing drawing primitives and built-in classes directly
in JavaScript, allowing for greater interoperability between both languages, as
Processing code is seamlessly integrated with JavaScript. To render Processing
scripts in a browser, Processing.js uses the HTML canvas element to provide
2D geometry, and WebGL to implement 3D geometry. Processing.js encourages
users to develop their scripts in Processing’s development environment, and then
render them in a web browser. Additionally, Sketchpad [9] is an alternative on-
line IDE for Processing.js, where users can create and test their design ideas
online and share them with the community.

3.2 ProfessorJ

ProfessorJ [10, 11] was developed to be a language extension for DrScheme [12].
ProfessorJ implements a traditional compiler pipeline, that starts with a lex

and yacc parsing phase, producing an intermediate representation in Scheme.
Subsequently, the translated code is analysed, generating target Scheme code by
using custom defined functions and macro transformations. ProfessorJ imple-
ments several strategies to map Java code to Scheme. For instance, Java classes
are translated into Scheme classes with certain caveats, such as implementing
static methods as Scheme procedures or by changing Scheme’s object creation
to appropriately handle Java constructors. Also, Java has multiple namespaces
while Scheme has a single namespace, hence name mangling techniques were

Combining Processing with Racket 153

SLATE’2015

implemented to correctly support multiple namespaces. Moreover, Java’s built-
in primitive types and some classes are directly implemented in Scheme, while
remaining classes are implemented in Java. Strings, Arrays, and Exceptions are
mapped directly into Scheme forms. Implementing them in Scheme is possible
(with some constraints) due to similarities in both languages which, in turn, al-
low for a high level of interoperability. Finally, ProfessorJ is fully integrated with
DrScheme, providing a development environment that offers syntax highlighting,
syntax checking, and error highlighting for Java code.

4 Compilation Process

After a careful analysis, we conclude that an IDE is an important feature to have
in a new implementation of the Processing language. Moreover, to have better
interoperability between the source and target languages, we observe that the
runtime of these systems are available in the target language. Alternatively,
other external Processing libraries could be explored to connect Processing with
the CAD environments. For instance, OBJExport [13] is a Processing library
to export coloured meshes from Processing as OBJ or X3D files. However, with
this approach the developer loses the interactivity of programming directly in a
CAD application, as users have to import the OBJ file each time the Processing
specification is changed, creating a cumbersome workflow.

Our proposed solution was to develop Processing as a new Racket language
module, using Rosetta for Processing’s visual needs, and integrating Processing
with DrRacket’s IDE services. We chose Racket, firstly, because it allows for the
development of new languages, providing libraries to implement the lexical and
syntactic definitions of the Processing language, as well as offering mechanisms
to generate semantically equivalent Processing code. Secondly, Racket’s capa-
bilities enable us to easily adapt our Processing implementation to work with
DrRacket (Racket’s educational IDE), providing an IDE to its users. Moreover,
after analysing ProfessorJ, we concluded that many parts of the lexical and syn-
tactical definitions, and type-checking procedures could be adapted, due to the
similarities between Java’s and Processing’s language definitions. Finally, our
implementation allows us to take advantage of Rosetta to augment Processing
with capabilities that make the language suitable for architectural work.

Our Processing implementation follows the traditional compiler pipeline ap-
proach (illustrated in figure 1), composed by three separated phases, namely
parsing, code analysis, and code generation.

Fig. 1: Overall compilation pipeline

154 Hugo Correia and António Menezes Leitão

SLATE’2015

4.1 Parsing Phase

The compilation process starts with the parsing phase, which is divided in two
main steps. First, Processing source code is read and transformed into tokens.
Secondly, tokens are given to an LALR parser, building an abstract syntax tree
(AST) of Racket objects which will be analysed in subsequent phases. To imple-
ment the lexer and parser specifications, we used Racket’s parser-tools [14]
library, adapting parts of ProfessorJ’s lexer and grammar specification to fit
Processing’s needs.

4.2 Code Analysis

Following the parsing phase, an analysis of the AST must be made, due to
differences between Processing’s and Racket’s language definitions. For instance,
Processing has static type-checking and different namespaces for methods, fields,
and classes, while Racket is dynamically typed and has a single namespace. As
a result, custom tailored mechanisms were needed to correctly type-check the
AST and support Processing’s scoping rules.

Firstly, the AST is traversed passing scope information to child nodes. When
a new definition is created, be it a function, variable, or class, the newly defined
binding is added to the current node’s scope along with its type information.
Each time a new scope is created in Processing, a new custom scope is created to
represent it, referring to the current scope as its parent. These mechanisms are
needed to implement Processing scoping and type-checking rules. For example,
the information of the return type, arity, and argument types are needed to
type-check a function call.

Secondly, the type-checking procedure runs over the AST starting topmost
AST node. As before, it repeatedly calls the type-checker on child nodes until the
full AST is traversed, using previously saved bindings in the current scope to find
out the types of each binding. During the type-checking procedures, each node
is tested for type correctness and, in some cases, promoting types if necessary.
In the event that types do not match, a type error is produced, signalling where
the type error occurred.

4.3 Code Generation

After the AST is fully analysed and type-checked, semantically equivalent Racket
code can be generated. To achieve this, every AST node generates Racket code
by using custom defined macros and functions. Afterwards, Racket will expand
the defined macros and load the generated code into Racket’s VM. By using
macros we can create boilerplate Racket code that can be constantly modified
and tested by the developer

Racket and Processing follow the same evaluation order on their programs,
thus most of Processing’s statements and expressions are directly mapped into
Racket forms. However, other statements such as return, break, or continue

Combining Processing with Racket 155

SLATE’2015

need a different handling, as they use control flow jumps. To implement this
behaviour, we used Racket’s escape continuations [15] in the form of let/ec.

Furthermore, Processing has multiple namespaces, which required an ad-
ditional effort to translate bindings to Racket’s single namespace. To support
multiple namespaces in Racket, binding names were mangled with custom tags.
For instance, a fn tag is appended to functions, so function foo internally would
be foo-fn. The use of ’-’ as a separator allows us to solve the problem of name
clashing with user defined bindings, as Processing does not allow ’-’ in names.
Also, as we have function overloading in Processing, we append specific tags that
represent the argument’s types to the function’s name. For instance, the follow-
ing function definition: int foo(float x, float y){ ... } would be translated
to (define (foo-FF-fn x y) ...).

To correctly support Processing’s distinctions between Active and Static
mode, we used the following strategy. We added a custom check in the parser
that signals if the code is in Active mode, i.e. if a function or method is defined.
In this mode, global statements are restricted, thus when generating code for
global statements we check if the code is in Active mode, if so we signal an error
indicating the invalid statement.

5 Runtime

Our runtime is implemented directly in Racket, allowing for greater interop-
erability with Racket libraries, namely Rosetta. However, this presents some
important issues. First, as Racket is a dynamically typed language, the type-
checker, at compile time, cannot know the types of Racket bindings. To solve
this issue, we introduced a new type in the type hierarchy, which the type-checker
ignores when type checking these bindings. Furthermore, as Processing primi-
tives and built-in classes are implemented in Racket, we also have the problem
of associating type information for these bindings. Therefore, we created a sim-
ple macro that allows us to associate type information to Racket definitions,
by adding them to the global environment, thus the type-checker can correctly
verify if types are compatible.

Moreover, Processing’s drawing paradigm closely resembles OpenGL’s tradi-
tional push & pop matrix style. To provide rendering capabilities in our system,
we use Rosetta, as it provides design abstractions that not only let us gen-
erate designs in an OpenGL render, but also give us access to several CAD
back-ends. Custom interface adjustments are needed to implement Processing’s
drawing primitives in Racket, as not every Processing primitive maps directly
into Rosetta’s. Furthermore, Rosetta also enables us to supply Processing de-
velopers with different drawing primitives which are unavailable in the original
Processing environment.

156 Hugo Correia and António Menezes Leitão

SLATE’2015

6 Interoperability

One of the advantages of developing a source-to-source compiler is the possi-
bility of combining libraries that are written in different languages. The Racket
platform encourages the use and development of different languages to fulfil pro-
grammers’ needs, offering a set of extension mechanisms that can be applied
to many of the language’s features. The combination of Racket’s language mod-
ules [6] and powerful hygienic macro system [16] enables users to extend the base
Racket environment with new syntax and semantics that can be easily composed
with modules written in different dialects.

To achieve interoperability with Racket, we developed Processing’s compila-
tion units as a Racket language module, adding Processing to Racket’s language
set. Nonetheless, compatibility issues between languages arise when accessing
exported bindings from a Racket module. First, a new require keyword was
introduced to specifically import bindings from other modules. This require

maps directly to Racket’s require form, receiving the location of the importing
module. By using Racket’s require we have access to all of Racket’s require se-
mantics, enabling the programmer to select, exclude, or rename imported binding
from the required module.

Furthermore, Racket and Processing have different naming rules. For in-
stance, function foo-bar! is a valid identifier in Racket but not in Process-
ing, thus we cannot reference the foo-bar! function in our Processing code.
To solve this issue, we use a translation procedure that takes a Racket identi-
fier and transforms it into a valid Processing identifier. For example, foo-bar!
would be translated to fooBarBang. Therefore, for each provided binding of a
required module, we apply the translation procedure on each binding, making
it available to the requiring module. By providing an automatic translation, the
developer’s effort is reduced, as he can quickly use any Racket module with his
Processing code. Notwithstanding, as developers may not be satisfied with our
automatic translation procedure, they can develop their custom mappings in a
Racket module adhering to Processing identifier’s rules.

Another issue that arises by importing foreign bindings, is making them ac-
cessible to our custom environment and type-checker, as they are needed during
the code analysis phase. To solve this issue, we dynamically load the required
module, saving exported bindings along with their arity. As Racket is dynam-
ically typed, we use a special type for arguments and return types that the
type-checker skips. As a result, when using bindings with this type, typing er-
rors will only be observed when these bindings are executed at runtime. To
illustrate the interoperability mechanism consider the foo-bar module figure
2, which provides the foo-bar function, and the Processing code illustrated in
figure 3.

As illustrated in figure 3, the function checkFoo uses the foo-bar procedure
from foo-bar.rkt. Note that our automatic translation procedure has been
applied to provided bindings from the foo-bar.rkt modules. So in checkFoo,
we use the automatically translated fooBar identifier to refer to foo-bar.

Combining Processing with Racket 157

SLATE’2015

#lang racket

(provide foo-bar)

(define (foo-bar foo)

...)

Fig. 2: The foo-bar module in Racket

#lang processing

require "foo -bar.rkt";

void checkFoo(String s) {

println(fooBar(s));

}

Fig. 3: checkFoo in Processing

To understand how this is accomplished, our require uses a custom macro
that receives the module’s path (i.e. the location of the required module), as well
as a list of pairs that map the original bindings of the module into their man-
gled form. To compute this list, we used Racket’s module->exports primitive to
provide the list of exported bindings. However, this information does not suffice,
as we need to know the arity of each exported binding. This is information is
needed to produce a compatible biding (i.e. a mangled binding) with our gener-
ated code. Therefore, we analysed each exported binding by module->exports,
and retrieved its arity using the procedure-arity primitive. This way we can
correctly perform the translation of external bindings to valid Processing identi-
fiers and generate bindings that work with our code generation process. Lastly,
when generating Racket code, our custom macro expands to Racket’s require

form, making each mangled binding available in the requiring module.

7 Example

Developing a source-to-source compiler has the advantage of allowing us to ex-
plore libraries written in another language. We provide an example of our im-
plementation, showing how Processing code can take advantage of libraries that
were previously built for 3D modelling. This is still a work in progress, thus the
compilation results are likely to change.

Consider the Processing code presented in figure 4. The mosaics procedure
generates a grid of mosaics given the length of each mosaic and the total size
of the grid. This function uses echo to generate the interior pattern of each
mosaic, progressively generating smaller arcs from each corner of the mosaic.
After generating the interior pattern, the frame generates the full outer boundary
of the grid.

This example illustrates the use of two external Racket libraries. First, we
require the fib.rkt module to use fib to compute the reducing factor of
arches size. This illustrates how we can use simple Racket code in our Process-
ing code. Secondly, we require draw.rkt, which allows us to access fullArc

and frame. These functions enabling us to generate the arcs and produce the en-
closing boundary. This example shows how we can use previously created Racket
drawing libraries with our Processing implementation. Moreover, observe the use
of xyz primitive. Rosetta provides custom mechanisms to abstract coordinate

158 Hugo Correia and António Menezes Leitão

SLATE’2015

require "fib.rkt"; require "draw.rkt";

void echo(int n, Object pos , float ang , float r) {

if (n == 1) {

fullArc(pos , r, ang , HALF_PI , 20);

} else {

fullArc(pos , r / fib(n), ang , HALF_PI , 20);

echo(n-1, pos , ang , r);

}

}

void mosaics(float l, int size) {

for(int i = 0; i < size; i++) {

for (int j = 0; j < size; j++) {

echo(10, xyz(i*l, j*l, 0), 0, l);

echo(10, xyz(i*l+l, j*l, 0), HALF_PI , l);

echo(10, xyz(i*l+l, j*l+l, 0), PI, l);

echo(10, xyz(i*l, j*l+l, 0), 3/2 * PI, l);

}

}

frame(xyz(0,0,0), size * l, 20);

}

Fig. 4: Processing code to generate mosaics in P2R

systems, namely cartesian (xyz), polar (pol), and cylindrical (cyl) which can
be used and combined interchangeably. As a result, we made these abstractions
(xyz, pol, and cyl) available in our system, so that users can take advantage of
them in their designs. Figure 5 illustrates an execution of the mosaics function
in AutoCAD.

Observe the generated Racket code for echo displayed in figure 6. The first
point that is immediately visible is that function identifiers are renamed to sup-
port multiple namespaces. We can see that the echo identifier is translated to
echo-IOFF-fn. Theses tags indicate the argument types of the function, where F,
O, and I, represent the types float, Object, and int. Also note that imported
bindings full-arc use the type O for their arguments, enabling the type-checker
to correctly deal with these imported bindings. Functions and macros such as
p-div, p-sub, or p-call are used to implement Processing’s language primi-
tives. Function are defined within a let/ec form, to support return semantics
in functions. However, let/ec is not always needed and can be removed, for
instance, in the case of unnecessary tail returns or when functions have return
type void.

8 Conclusion

Implementing Processing in Racket allows us to access libraries written in any
language of the Racket ecosystem and use DrRacket’s IDE services, enabling
users to choose the appropriated language for the job at hand. As a result,

Combining Processing with Racket 159

SLATE’2015

Fig. 5: Mosaics generated in AutoCAD

taking advantage of Rosetta allows architects to use Processing to generated
designs in a CAD tool, thus providing a motivating reason for the architecture
community to use our system.

Our approach was to develop the parts of the language that Processing users
most need, that empower them to write simple scripts. The implementation fol-
lows the common compiler pipeline architecture, generating semantically equiv-
alent Racket code and loading it into Racket’s VM. Moreover, we developed an
interoperability mechanism to access Racket libraries, therefore making Rosetta’s
capabilities available in Processing. In the future, our goal is to further develop
our existing work, and progressively introduce more advanced mechanisms, such
as implementing Processing’s class system and exception handling. Other possi-
ble features would be to develop visual support for REPL interactions or support
live coding.

Acknowledgements This work was partially supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/
2013, and by the Rosetta project under contract PTDC/ATP-AQI/5224/2012.

(p-function (echo-IOFF-fn n p a r)

(let/ec return

(p-block

(p-if (p-eq n 1)

(p-block (p-call fullArc-OOOOO-fn p r ang HALF_PI h))

(p-block (p-call fullArc-OOOOO-fn p (p-div r (p-call

fib-O-fn n)) a HALF_PI h)

(p-call echo-IOFF-fn (p-sub n 1) p a r))))))

Fig. 6: Generated Racket code for echo

160 Hugo Correia and António Menezes Leitão

SLATE’2015

References

1. Casey Reas and Ben Fry. Processing: programming for the media arts. AI &
SOCIETY, 20(4):526–538, 2006.

2. M Flatt and RB Findler. The racket guide. http://docs.racket-lang.org/

guide/, 2011. Accessed: 2014-05-02.
3. José Lopes and António Leitão. Portable generative design for cad applications. In

Proceedings of the 31st annual conference of the Association for Computer Aided
Design in Architecture, pages 196–203, 2011.

4. Matthew Flatt. Creating languages in racket. Communications of the ACM,
55(1):48–56, 2012.

5. Pedro Palma Ramos and António Menezes Leitão. An implementation of python
for racket. 7 th European Lisp Symposium, page 72, 2014.

6. Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew Flatt, and
Matthias Felleisen. Languages as libraries. In Proceedings of the 32nd ACM SIG-
PLAN conference on Programming language design and implementation, pages
132–141. ACM, 2011.

7. John Maeda. Design by Numbers. MIT Press, Cambridge, MA, USA, 1999.
8. John Resig, Ben Fry, and Casey Reas. Processing. js, 2008.
9. Ari Bader-Natal. Sketchpad. http://sketchpad.cc/, 2011. Accessed: 2015-04-28.

10. Kathryn E Gray and Matthew Flatt. Compiling java to plt scheme. In Proc. 5th
Workshop on Scheme and Functional Programming, pages 53–61, 2004.

11. Kathryn E Gray and Matthew Flatt. Professorj: a gradual introduction to java
through language levels. In Companion of the 18th annual ACM SIGPLAN confer-
ence on Object-oriented programming, systems, languages, and applications, pages
170–177. ACM, 2003.

12. Robert Bruce Findler, Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi,
and Matthias Felleisen. Drscheme: A pedagogic programming environment for
scheme. In Proceedings of the9th International Symposium on Programming Lan-
guages: Implementations, Logics, and Programs: Including a Special Trach on
Declarative Programming Languages in Education, PLILP ’97, pages 369–388, Lon-
don, UK, 1997. Springer-Verlag.

13. Jesse Louis-Rosenberg. Objexport. http://n-e-r-v-o-u-s.com/tools/obj/,
2013. Accessed: 2015-04-29.

14. Scott Owens. Parser tools: lex and yacc-style parsing. http://docs.racket-lang.
org/parser-tools/, 2011. Accessed: 2014-09-22.

15. M Flatt and RB Findler. The racket guide, chapter 10.3 continuations. http:

//docs.racket-lang.org/guide/conts.html?q=continuations, 2011. Accessed:
2014-05-05.

16. Matthew Flatt. Composable and compilable macros:: You want it when? SIGPLAN
Not., 37(9):72–83, September 2002.

Combining Processing with Racket 161

SLATE’2015

162 Hugo Correia and António Menezes Leitão

SLATE’2015

On Extending a Full-Sharing Multithreaded
Tabling Design with Batched Scheduling

Miguel Areias and Ricardo Rocha

CRACS & INESC TEC and Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal

{miguel-areias,ricroc}@dcc.fc.up.pt

Abstract. Tabling is a technique that overcomes some limitations of
traditional Prolog systems in dealing with redundant sub-computations
and recursion. When tabling is combined with multithreading, we have
the best of both worlds, since we can exploit the combination of higher
declarative semantics with higher procedural control. To support this
combination, the Yap Prolog system has, at engine level, multiple de-
signs that vary from a No-Sharing design, where each thread allocates
fully private tables, to a Full-Sharing (FS) design, where threads share
the complete table space. In this work, we propose an extension to the
table space data structures, which we named Private Answer Chaining
(PAC), as way to support batched scheduling evaluation with the FS de-
sign. Batched scheduling is one of the most successful tabling scheduling
strategies, known to be useful when a tabled logic program requires an
eager propagation of answers and/or do not requires the complete set of
answers to be found. Experimental results show that PAC is a good first
approach, since with it the FS design remains quite competitive.

Keywords: Logic Programming, Multithreading, Tabling, Scheduling.

1 Introduction

Tabling [4] is a technique that overcomes some limitations of traditional Pro-
log systems in dealing with redundant sub-computations and recursion. Tabling
consists in storing intermediate answers for subgoals in a proper data structure,
called the table space, so that they can be reused when a repeated subgoal ap-
pears during the resolution process. Tabling has become a popular and successful
technique thanks to the ground-breaking work in the XSB Prolog system and
in particular in the SLG-WAM engine [8], the most successful engine of XSB.
Implementations of tabling are now widely available in systems like Yap Prolog,
B-Prolog, ALS-Prolog, Mercury, Ciao Prolog and more recently Picat.

Multithreading in Prolog is the ability to concurrently perform computations,
in which each computation runs independently but shares the program clauses.
When multithreading is combined with tabling, we have the best of both worlds,
since we can exploit the combination of higher procedural control with higher
declarative semantics. To the best of our knowledge, XSB [6] and Yap [2] are

IV Symposium on Languages Applications and Technologies Pages 163–172
18th and 19th June, Madrid, Spain 978-84-606-8762-7

the only Prolog systems that support the combination of multithreading with
tabling. In this work, we will focus on Yap’s implementation that follows a SWI-
Prolog compatible multithreading library [9]. For tabled evaluation, a thread
views its tables as private but, at the engine level, Yap has three designs [2],
which vary from a No-Sharing (NS) design, where each thread allocates private
tables for each new tabled subgoal call, to a Full-Sharing (FS) design, where
threads share the complete table space.

The decision about the evaluation flow is determined by the scheduling strat-
egy. Different strategies may have a significant impact on performance, and may
lead to a different ordering of solutions to the query goal. Arguably, the two most
successful tabling scheduling strategies are local scheduling and batched schedul-
ing [5]. Local scheduling tries to complete subgoals as soon as possible. When
new answers are found, they are added to the table space and the evaluation
fails. Local scheduling has the advantage of minimizing the size of clusters of
dependent subgoals, however it delays propagation of answers and requires the
complete evaluation of the search space.

Batched scheduling favors forward execution first, backtracking next, and
consuming answers or completion last. It thus tries to delay the need to move
around the search tree by batching the return of answers to repeated subgoals.
When new answers are found for a particular tabled subgoal, they are added
to the table space and the evaluation continues. Batched scheduling can be an
useful strategy in tabled logic programs that require an eager propagation of
answers and/or do not require the complete set of answers to be found.

With the FS design, all tables are shared. Thus, since several threads can
be inserting answers in the same table, when an answer already exists, it is not
possible to determine if the answer is new or repeated for a particular thread
without further support. For local scheduling, this is not a problem since, for
repeated and new answers, local scheduling always fails. The problem is with
batched scheduling that requires that only the repeated answers should fail.
Threads have then to detect, during batched evaluation, whether an answer is
new and must be propagated or whether an answer is repeated and the evaluation
should fail.

In this work, we propose an extension to the table space data structures,
which we named Private Answer Chaining (PAC), as a way to keep track, per
thread and subgoal call, of the answers that were already found and propagated.
We discuss in detail our proposal for extending the FS design with batched
scheduling and we present a performance analysis comparison between local
and batched scheduling. Experimental results show that, despite the extra PAC
data structures required to support batched scheduling with the FS design, the
execution time of the combination is still quite competitive.

The remainder of the paper is organized as follows. First, we briefly intro-
duce some background and related work. Then, we describe our PAC approach
and we discuss the most important implementation details. Finally, we present
experimental results and we end by outlining some conclusions.

164 Miguel Areias and Ricardo Rocha

SLATE’2015

2 Background

The basic idea behind tabling is straightforward: programs are evaluated by
storing answers for tabled subgoals in an appropriate data space, called the
table space. Repeated calls1 to tabled subgoals are not re-evaluated against the
program clauses, instead they are resolved by consuming the answers already
stored in their table entries. During this process, as further new answers are
found, they are stored in their tables and later returned to all repeated calls.

Table Space

Subgoal
Frame
call_i

Answer
Trie

Structure

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_j

Answer
Trie

Structure

. . .

Fig. 1. Table space organization

Figure 1 shows Yap’s table space organiza-
tion. At the entry point we have the table entry
data structure. This structure is allocated when
a tabled predicate is being compiled, so that a
pointer to the table entry can be included in its
compiled code. This guarantees that further calls
to the predicate will access the table space start-
ing from the same point. Below the table entry,
we have the subgoal trie structure. Each different
tabled subgoal call to the predicate at hand cor-
responds to a unique path through the subgoal
trie structure, always starting from the table en-
try, passing by several subgoal trie data units,
the subgoal trie nodes, and reaching a leaf data
structure, the subgoal frame. The subgoal frame
stores additional information about the subgoal
and acts like an entry point to the answer trie structure. Each unique path
through the answer trie data units, the answer trie nodes, corresponds to a
different answer to the entry subgoal.

2.1 Yap’s Multithreaded Tabling Support

In Yap, a thread views its tables as private but, at the engine level, it implements
three designs for concurrent tabling support that vary from a No-Sharing (NS)
design, where each thread allocates fully private tables, to a Full-Sharing (FS)
design, where threads share the complete table space. Figure 2 shows Yap’s
multithreaded table space organization for the NS and FS designs, where an
interface layer abstracts the design being used at the engine level. The figure
illustrates the main differences between the two designs for a situation where
several threads are evaluating the same tabled subgoal call call i.

When using the NS design, one can observe that the table entry data struc-
ture still stores the common information for the predicate (such as the arity or
the scheduling strategy), and then each thread t has its own cell Tt inside a
bucket array which points to the private data structures.

1 We are considering variant-based tabling [7]. Two tabled subgoals A and B are vari-
ants if they can be made identical by variable renaming. For example, p(X,1,Y) and
p(Y,1,Z) are variants because both can be transformed into p(VAR0,1,VAR1).

On Extending a Full-Sharing Multithreaded Tabling Design with Batched Scheduling 165

SLATE’2015

No-Sharing (NS)

Answer
Trie

Structure

Subgoal
Frame
call_i

Subgoal
Trie

Structure

Full-Sharing (FS)

Subgoal
Frame
call_i

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_i

Answer
Trie

Structure

Thread
T

ABSTRACTION LAYER

Sg_Entry Sg_Entry

. . .
0

Thread
T1

Thread

. . .T0 T1 Tk-2 Tk-1

Table Entry

Answer
Trie

Structure

Subgoal
Frame
call_i

Subgoal
Trie

Structure . . .T0 T1 Tk-2 Tk-1

Subgoal Entry call_i

Tk-2

Thread
Tk-1

Fig. 2. Yap’s multithreaded table space organization for the NS and FS designs

When using the FS design, the subgoal and answer trie structures and part
of the subgoal frame information (the subgoal entry data structure in Fig. 2) are
shared among all threads. The previous subgoal frame data structure was split
in two: the subgoal entry stores common information for the subgoal call (such
as the pointer to the shared answer trie structure); the remaining information is
kept private to each thread in the subgoal frame data structure.

2.2 Scheduling Strategies

Local scheduling evaluates a tabled logic program in a breath-first manner. It fa-
vors backtracking first with completion instead of forward execution, leaving the
consumption of answers for last. Local scheduling only allows a Cluster of De-
pendent Subgoals (CDS) to return answers after a fix-point has been reached [5].
In other words, local scheduling tries to keep a CDS as minimal as possible, thus
creating less complex dependencies between subgoals, which causes a sooner
completion of subgoals.

On the other hand, batched scheduling evaluates a tabled logic program in a
depth-first manner. It favors the forward execution first instead of backtracking,
leaving the consumption of answers and completion for last. It thus tries to delay
the need to move around the search tree by batching the return of answers. When
new answers are found for a particular tabled subgoal, they are added to the
table space and the execution continues. For some situations, this results in
creating dependencies to older subgoals, therefore enlarging the current CDS

166 Miguel Areias and Ricardo Rocha

SLATE’2015

and delaying the fix-point that guarantees that all dependent subgoals in a CDS
are completely evaluated [8]. Batched scheduling can be an useful strategy in
tabled logic programs that require an eager propagation of answers and/or do
not require the complete set of answers to be found.

3 Extending Full-Sharing with Batched Scheduling

Full-Sharing (FS)

Subgoal
Frame
call_i

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_i

Answer
Trie

Structure

Sg_Entry Sg_Entry

. . .T0 T1 Tk-2 Tk-1

Subgoal Entry call_i

Answer
Representation

Answer
Propagation

Fig. 3. PAC overview

In this section, we describe our
proposal to support the combina-
tion of batched scheduling with the
FS design. In the original FS de-
sign, answer propagation and an-
swer representation are both stored
in the answer trie data structure,
thus threads are unable to distin-
guish whether they have or not
have propagated an answer al-
ready stored in the table space. To
solve that, we propose an exten-
sion to the table space data struc-
tures, which we named Private An-
swer Chaining (PAC), as a way to
keep track, per thread and subgoal
call, of the answers that were al-
ready found and propagated to the
thread’s repeated calls. Figure 3 illustrates PAC’s key idea. In a nutshell, PAC
splits answer propagation from answer representation, and allows the first to be
privately stored in the subgoal frame data structure of each thread, and the sec-
ond to be kept publicly shared among threads in the answer trie data structure.

3.1 Our Approach

The PAC procedure works at the subgoal frame level. The key idea is to extend
subgoal frames with an auxiliary private chaining of answers for each subgoal
call, in order to keep track of the answers already found for the call. Later, if a
thread completes a subgoal’s evaluation, i.e, if the subgoal’s table is marked as
complete, its PAC is made public, so that from that point on all threads can use
that chain in complete (only reading) mode. Figure 4 illustrates the new data
structures involved in the implementation of our PAC’s proposal for a situation
where different threads are evaluating the same tabled subgoal call call i.

Figure 4(a) shows then a situation where two threads, T1 and Tk−2, are
sharing the same subgoal entry for a call call i still under evaluation, i.e., still
not yet completed. The current state of the evaluation shows an answer trie with
3 answers found for call i. For the sake of simplicity, we are omitting the internal

On Extending a Full-Sharing Multithreaded Tabling Design with Batched Scheduling 167

SLATE’2015

Subgoal Entry call_i

Answers

. . .T0 T1 Tk-2 Tk-1

Subgoal
Frame
call_i

Subgoal
Frame
call_i

AT

LN3 LN2 LN1

Answers

AN3

AN2

AN1AN1

(a)

Answers

Answer Trie

Subgoal Entry call_i

Answers

. . .T0 T1 Tk-2 Tk-1

Subgoal
Frame
call_i

Subgoal
Frame
call_i

AT

LN3 LN2 LN1

Answers

Answers

Answer Trie

(b)

Fig. 4. PAC’s data structures for (a) private and (b) public chaining

answer trie nodes and we are only showing the leaf nodes LN1, LN2 and LN3

of each answer.

With PAC support, the leaf nodes are not chained in the answer trie data
structure, as usual. Now, the chaining process is done privately, and for that, we
use the subgoal frame structure of each thread. On the subgoal frame structure
we added a new field, called Answers, to store the answers found within the
execution of the thread. In order to minimize PAC’s impact, each answer node in
the private chaining has only two fields: (i) an entry pointer, which points to the
corresponding leaf node in the answer trie data structure; and (ii) a next pointer
to chain the nodes in the private chaining. To maintain good performance, when
the number of answer nodes exceeds a certain threshold, we use a hash trie
mechanism design similar to the one presented in [3], but without concurrency
support, since this mechanism is private to each thread.

168 Miguel Areias and Ricardo Rocha

SLATE’2015

PAC’s data structures in Fig. 4(a) represent then two different situations.
Thread T1 has only found one answer and it is using a direct answer chaining
to access the leaf node LN1. Thread Tk−2 was already found three answers for
call i and it is using the hash trie mechanism within its private chaining. In
the hash trie mechanism, the answer nodes are still chained between themselves,
thus that repeated calls belonging to thread Tk−2 can consume the answers as
in the original mechanism.

Figure 4(b) shows the state of the subgoal call after completion. When a
thread T completes a subgoal call, it frees its private consumer structures, but
before doing that, it checks whether another thread as already marked the sub-
goal as completed. If no other thread has done that, then thread T not only
follows its private chaining mechanism, as it would for freeing its private nodes,
but also follows the pointers to the answer trie leaf nodes in order to create a
chain inside the answer trie. Since this procedure is done inside a critical region,
no more than one thread can be doing this chaining process. Thus, in Fig. 4(b),
we are showing the situation where the subgoal call call i is completed and both
threads T1 and Tk−2 have already chained the leaf nodes inside the answer trie
and removed their private chaining structures.

3.2 Implementations Details

The major difference between local and batched scheduling, at the engine level,
is in the tabled new answer operation, where we decide what to do when a
new answer is found during the evaluation. This operation checks whether a
newly found answer is already in the corresponding answer trie structure and, if
not, inserts it. For local scheduling, it then fails and, for batched scheduling, it
proceeds with forward execution. Algorithm 1 shows how we have extended this
operation to support the FS design with batched scheduling.

Algorithm 1 tabled new answer(answer ANS, subgoal frame SF)

1: leaf ← check insert answer trie(ANS, SF)
2: chain← check insert consumer chain(leaf, SF)
3: if is answer marked as found(chain) then
4: return failure
5: else {the answer is new}
6: mark answer as found(chain)
7: if local scheduling mode(SF) then
8: return failure
9: else {batched scheduling mode}

10: return proceed

The algorithm receives two arguments: the newly found answer during the
evaluation (ANS) and the subgoal frame which corresponds to the call at hand
(SF). The algorithm begins by checking/inserting the given ANS into the answer
trie structure, which will return the leaf node for the path representing ANS (line
1). Then, it checks/inserts the given leaf node into the private chaining for the

On Extending a Full-Sharing Multithreaded Tabling Design with Batched Scheduling 169

SLATE’2015

current thread, which will return the corresponding answer chain node (line 2).
Next in line 3, it tests whether the answer chain node already existed in the
chain, i.e., if it was inserted or not by the current check/insert operation in
order to return failure (line 4), or it proceeds with marking the answer ANS has
found (line 6). At the end (lines 7 to 10), it returns failure, if local scheduling
is active (line 8), otherwise, batched scheduling is active, and it proceeds by
propagating the answer ANS to the current execution environment (line 10).

4 Performance Analysis

We now present experimental results about the usage of PAC in the FS design
with batched scheduling. Since without PAC the FS design would not be able
to be used with batched scheduling, to put PAC’s results in perspective, we
will be showing also the results for local scheduling and for the NS design. The
environment for our experiments was a machine with 32-Core AMD Opteron
(TM) Processor 6274 (2 sockets with 16 cores each) with 32GB of main memory,
running the Linux kernel 3.16.7-200.fc20.x86 64 with Yap Prolog 6.3. For the
experiments, we used the TabMalloc memory allocator [1] and the set of bench-
marks described in [1]. These benchmarks create worst case scenarios, where
we are able to show the lowest bounds of performance that each design might
achieve when applied/used in other real world applications/programs.

Table 1 shows the overhead ratios, when comparing against the NS design
with 1 thread (running with local scheduling and without TabMalloc), for the NS
and FS designs with 1, 8, 16, 24 and 32 threads, using local scheduling (column
Local) and batched scheduling (column Batched) strategies with TabMalloc. In
order to give a fair weight to each benchmark, the overhead ratio is calculated
as follows. We begin by running 10 times each benchmark B for each design
D with T threads. Then, we calculate the average of those ten runs and use
that value (DBT) to put it in perspective against the base time, which is the
average of 10 runs of the NS design with 1 thread (NSB1). For that, we use the
following formula for the overhead ODBT = DBT /NSB1. After calculating all the
overheads ODBT for a certain design D and number of threads T corresponding
to the several benchmarks B, we calculate the respective minimum, average,
maximum and standard deviation overhead ratios (rows Min, Avg, Max and
StD in Table 1).

By observing Table 1, we can see that batched scheduling always achieves the
best minimum overhead ratio in the FS design but, for the average and maximum
overhead ratios, the best strategy is always local scheduling. For the average and
maximum overhead ratios, the difference between local and batched scheduling
in the FS design is slightly higher than in the NS design, which can be read as an
indication of the overhead that PAC introduces into the FS design. Recall that
whenever an answer is found during the evaluation, PAC requires that threads
traverse their private consumer data structures to check if the answer was already
found (and propagated).

170 Miguel Areias and Ricardo Rocha

SLATE’2015

Table 1. Overhead ratios, when compared with the NS design with 1 thread (running
with local scheduling and without TabMalloc) for the NS and FS designs (with Tab-
Malloc) when running 1, 8, 16, 24 and 32 threads with local and batched scheduling
(best ratios by row and design for the Minimum, Average and Maximum are in bold)

Threads
NS FS

Local Batched Local Batched

1

Min 0.53 0.55 1.01 0.95
Avg 0.78 0.82 1.30 1.46
Max 1.06 1.05 1.76 2.33
StD 0.15 0.14 0.22 0.44

8

Min 0.66 0.63 1.16 0.99
Avg 0.85 0.88 1.88 1.95
Max 1.12 1.14 2.82 3.49
StD 0.13 0.14 0.60 0.79

16

Min 0.85 0.75 1.17 1.06
Avg 0.98 1.00 1.97 2.08
Max 1.16 1.31 3.14 3.69
StD 0.09 0.17 0.65 0.83

24

Min 0.91 0.93 1.16 1.09
Avg 1.15 1.16 2.06 2.19
Max 1.72 1.60 3.49 4.08
StD 0.20 0.21 0.70 0.91

32

Min 1.05 1.04 1.33 1.26
Avg 1.51 1.49 2.24 2.41
Max 2.52 2.63 3.71 4.51
StD 0.45 0.45 0.74 1.02

As we increase the number of threads, for the NS design, both scheduling
strategies show very close minimum, average and maximum overhead ratios.
For the FS design, the differences are slightly higher. However, for the average
overhead ratio, the results between both strategies are quite close, with batched
scheduling being around 10% slower than local scheduling for the FS design.
In summary, our experimental results show that, on average, the PAC strategy
does not seem to have a big impact in the performance, however it still leaves
room for further improvements, since the difference between local and batched
scheduling is higher in the FS design than in the NS design.

5 Conclusions and Further Work

Local and batched scheduling are arguably two of the most well-known tabling
scheduling strategies. The major difference between both is that local scheduling
propagates answers only after all answers are found, while batched scheduling
propagates answers immediately after they are found. Batched scheduling is a
useful strategy in tabled logic programs that require an eager propagation of
answers and/or do not require the complete set of answers to be found. In this

On Extending a Full-Sharing Multithreaded Tabling Design with Batched Scheduling 171

SLATE’2015

work, we have presented the PAC strategy, which is a simple and novel approach
for combining the FS design with batched scheduling. PAC splits answer rep-
resentation from answer propagation, and allows the first to be publicly shared
among threads while the second to be private to each thread.

Experimental results in worst-case scenarios showed that, on average, the
PAC strategy does not seem to have a big impact in the performance, however
it still leaves room for further improvements specially in the extra structures
required to control the propagated answers. Further work will include the usage
of time-stamped tries to minimize the search for the propagated answers and new
real-world problems that will allow us to improve and consolidate our framework.

Acknowledgments

This work is partially funded by the North Portugal Regional Operational Pro-
gramme (ON.2 – O Novo Norte) and by the National Strategic Reference Frame-
work (NSRF), through the European Regional Development Fund (ERDF) and
the Portuguese Foundation for Science and Technology (FCT), within projects
NORTE-07-0124-FEDER-000059 and UID/EEA/50014/2013.

References

1. Areias, M., Rocha, R.: An Efficient and Scalable Memory Allocator for Multi-
threaded Tabled Evaluation of Logic Programs. In: International Conference on
Parallel and Distributed Systems. pp. 636–643. IEEE Computer Society (2012)

2. Areias, M., Rocha, R.: Towards Multi-Threaded Local Tabling Using a Common
Table Space. Journal of Theory and Practice of Logic Programming, International
Conference on Logic Programming, Special Issue 12(4 & 5), 427–443 (2012)

3. Areias, M., Rocha, R.: A lock-free hash trie design for concurrent tabled logic pro-
grams. International Journal of Parallel Programming pp. 1–21 (2015)

4. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-
grams. Journal of the ACM 43(1), 20–74 (1996)

5. Freire, J., Swift, T., Warren, D.S.: Beyond Depth-First: Improving Tabled Logic
Programs through Alternative Scheduling Strategies. In: International Symposium
on Programming Language Implementation and Logic Programming. pp. 243–258.
No. 1140 in LNCS, Springer (1996)

6. Marques, R., Swift, T.: Concurrent and Local Evaluation of Normal Programs. In:
International Conference on Logic Programming. pp. 206–222. No. 5366 in LNCS,
Springer (2008)

7. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access
Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38(1), 31–54
(1999)

8. Sagonas, K., Swift, T.: An Abstract Machine for Tabled Execution of Fixed-Order
Stratified Logic Programs. ACM Transactions on Programming Languages and Sys-
tems 20(3), 586–634 (1998)

9. Wielemaker, J.: Native Preemptive Threads in SWI-Prolog. In: International Con-
ference on Logic Programming. pp. 331–345. No. 2916 in LNCS, Springer (2003)

172 Miguel Areias and Ricardo Rocha

SLATE’2015

An AST-based Tool, Spector, for Plagiarism
Detection: The Approach, Functionality, and

Implementation

Vı́tor T. Martins, Pedro Rangel Henriques, and Daniela da Cruz

Universidade do Minho, Departamento de Informática / Centro Algoritmi
4710-057 Braga, Portugal

http://www.di.uminho.pt/eng/

{vtiagovm,pedrorangelhenriques,danieladacruz}@gmail.com

Abstract. We propose a methodology using abstract syntax trees for
the detection of plagiarism in source code, within an academic environ-
ment.
We show the architecture and decisions that came before we produce
our own solution (Spector), after conducting a study of the methods and
tools in existence. An example is then shown, which goes through and
explains each of the algorithms steps.
Finally, conclusions are drawn noting that such a system, while not the
most efficient, produces accurate results.

Keywords: software, plagiarism, detection, comparison, test

1 Introduction

In our previous work[3], we discuss the results of our search for source code
plagiarism detection methodologies and tools. We found several candidates but,
after testing their accuracy by using files modified to hide plagiarism, we saw
that most solutions had trouble with some cases.

Given the desire to make detections upon programs and our experience in
language engineering, we were motivated to use a compilation aproach. After
some research and discussion, we chose to use Abstract Syntax Trees (ASTs)
since, by abstracting source code, we can analyze its functionality. Such tools
exist and were said to be accurate [1, 2] but were not available for download or
use. To counteract that lack, our contribution will be the development of one
such tool and make it openly available.

2 Approach

Fig. 1 shows the representation of an AST generated from a source code. We can
see that the original source code defines a function (sum) that adds two integers
and uses it to print an equation that adds 4 to 7.

IV Symposium on Languages Applications and Technologies Pages 173–178
18th and 19th June, Madrid, Spain 978-84-606-8762-7

Fig. 1. An AST generated from a source code

Knowing that this representation gives us an ordered network of nodes, while
retaining the information about their type and contents, it is easy to see that it
provides enough information for source code comparison.

In order to facilitate the generation of ASTs, we have chosen to use ANTLR1[4]
which allows us to generate parsers from grammar files, which can translate
source code into an AST automatically.

2.1 Target Characteristics

As previously said, by using an intermediate abstraction, we can easily ignore
specific characteristics. So we will focus on those that can be modified without
altering the source code functionality. Namely Identifiers (the names of classes,
variables, etc), Expression elements (for ex.: x,>, 1), Conditionals (like if and
while) and Blocks (a group of statements enclosed between {}).

This means we will ignore other characteristics like comments, as we are
focusing on the source codes functionality. For example, if we wanted to compare
Identifiers we do not need to check their scope or type, we can simply see if they
are used in the same places and have similar behaviors.

1 ANother Tool for Language Recognition

174 Vítor T. Martins, Pedro Rangel Henriques and Daniela da Cruz

SLATE’2015

2.2 Architecture

After making our decisions on how our system would work, we gave it the name
of Spector (Source insPECTOR). We also produced a diagram (in Fig. 2) that
shows the various parts and how they relate.

Fig. 2. A diagram of the interaction between the systems parts

Fig. 2 shows that, given a Grammar G, we can produce a Parser+TreeBuilder
TB, using ANTLR. This TB can then be used to translate a Program P into
an AST. Given a pair of Programs (let us say P1 and P2), a TB will be used
to produce AST1 and AST2. These ASTs will then be delivered to an Inspector
which will produce measures and send them to a Presenter which will output
the results. To support a new language, we would simply replace G and generate
a new TB.

3 Functionality

The functionality is split into 5 algorithms that each produce a measure, along
with a final one that calculates the global measure.

Given source codes S1 and S2, we first check if they are not exact copies by
comparing: the number of nodes, the number of nodes by category2 and finally,
the contents of every node. When all those comparisons match, we return a
measure of 100%, which avoids using the other algorithms.

For other cases, we have algorithms for each target (listed in Section 2.1).
While these algorithms work in different ways, they follow a base functionality:

1. Build a map per source, associating elements to their occurrences (M1,M2),
2. Calculate the highest number of items between both Ms (A),
3. For each pair of items between M1 and M2,

(a) If their number of occurrences is similar,

2 In grammatical terms, these categories are the terminals that were assigned to inte-
gers by ANTLR (in a ṫokens file).

An AST-based Tool, Spector, for Plagiarism Detection 175

SLATE’2015

i. Add the pair to a map (Candidates),
4. Calculate the size of the Candidates map (B),
5. Measure += (B/A) ∗W1,
6. For each pair in the Candidates map,

(a) If their number of occurrences by category is similar,
i. Add the pair to a map (Suspects),

7. Calculate the size of the Suspects map (C),
8. Measure += (C/B) ∗W2,
9. For each pair in the Suspects map,

(a) If they have a similar behavior (specific to each algorithm),
i. Add the pair to a map (Equivalences),

10. Calculate the size of the Equivalences map (D),
11. Measure += (D/C) ∗W3,
12. For each pair of identifier names in the Equivalences map,

(a) If their contents are the same,
i. Add the pair to a map (Copies),

13. Calculate the size of the Copies map (E),
14. Measure += (E/D) ∗W4,
15. Return Measure.

The Wi variables indicate weight constants and were given a value of 0.18,
0.42, 0.38 and 0.02, respectively. We chose these values based on a few tests.
However, they must be adjusted through the use of further tests.

Of course, each algorithm is targeting something different, so they have the
following differences:

Algorithm that detects Identifiers: The map (M) associates an Identifier name
to its Occurrence nodes (IOM), which is similar if their parent nodes have the
same category and the (non-identifier) neighbors3 have the same contents.

Algorithm that detects Expression elements: The map (M) associates an Ex-
pression element to its Occurrence nodes (EOM), which is similar to those whose
(non-identifier) neighbors contents are equal.

Algorithm that detects Conditionals: The map (M) associates a Conditional
to its Condition node (CCM), which is similar to those whose condition has
(non-identifier) nodes with the same contents.

Algorithm that detects Blocks: In this case, two maps are created: one asso-
ciates a Block node to a Name4 (BNM) and the other associates each Block node
to all of its Children (BCM). The children are: every node inside the block along
with the nodes from called blocks. This is done by checking if nodes are calls to
internal methods, in which case the contents of the called block are added.

Main Algorithm: This algorithm calculates a final measure from those pro-
duced by the previous algorithms. That final measure is a similarity measure of
a pair of Suspects.

3 The other children of this nodes parent.
4 This name is the identifier of the parent block, in other words, ”mainblock” has a

block with ”main” as its name.

176 Vítor T. Martins, Pedro Rangel Henriques and Daniela da Cruz

SLATE’2015

Let us consider that each algorithm was implemented in a method Methodi,
where i is a number from 1 to 5. With Method1 being the one which determines
if two source codes are exact copies. The algorithm works as follows:

1. X = Array with 5 elements,
2. for each method i,

(a) X[i] = Methodi(SA, SB),
3. If X[1] is different from 0,

(a) Return X[1].
4. Otherwise

(a) Calculate the number of Xs from 2 to 5 that are not 0 (A),

(b) Measure = (X[2]+X[3]+X[4]+X[5]
A) ∗ 100,

(c) Return Measure.

As we can see, the algorithm either returns the X[1] measure (which is either
0% or 100%) or the average computation done using the other results (X[2] to
X[5]) that were not 0%.

Threshold. Since the algorithms match the number of occurrences when check-
ing if the elements should be added to a Candidates map, the comparisons will
be limited to cases with an equal number of occurrences. Which led us to the
addition of a similarity threshold, which specifies the strictness of the compar-
isons. As an example: If we were comparing the number of nodes within two
blocks and the first had 10 nodes, a threshold of 20% means that the second
AST must have between 8 and 12 nodes to be considered similar.

4 Implementation

To keep Spector modular, we split its functionality into two packages. A lang
package which contains a Suspect class that will have the input generated from a
source code and, for each language: The Parser+TreeBuilder classes and a Nexus
class which interfaces with them. Along with a spector package that contains
the main classes (Spector, Inspector and Presenter) along with their auxiliary
classes (FileHandler and Comparison).

4.1 Features

We list below the main features provided by our tool:

1. Can output summary and/or detailed results,
2. Accepts submissions as groups of files,
3. Works offline,
4. Available as Open Source.

It is important to note that, the first two are relevant for any plagiarism detector
and the other two are crucial since we want the tool to be available for integration
into other systems.

An AST-based Tool, Spector, for Plagiarism Detection 177

SLATE’2015

5 Example

As we have a limit of pages, the example can be viewed at the following web-
site: http://www3.di.uminho.pt/~gepl/Spector/paper/slate15/examples/
algorithms.pdf

6 Conclusion

In this paper, we have discussed our approach on building a tool that will detect
plagiarism in source code named Spector. We have defined its structure and the
decisions that were behind it. We have also seen the algorithms that will drive
the comparisons and how they are used together to produce similarity measures.
Seeing as we focused on detecting similarity between source code structures, the
resulting tool is a source code similarity detector and is likely to report false-
positives when faced with smaller code.

As future work we have the improvement of the results in terms of infor-
mation about the associations established. Along with the upgrade of the Java
grammar, to support the latest version of the Java language and the extension
with grammars to cope with other languages.

The next step will be to perfect the tools implementation and test it against
bigger test cases so that an optimal threshold and weights may be determined.

References

1. Bahtiyar, M.Y.: JClone: Syntax tree based clone detection for Java. Master’s thesis,
Linnæus University (2010)

2. Cui, B., Li, J., Guo, T., Wang, J., Ma, D.: Code comparison system based on abstract
syntax tree. In: Broadband Network and Multimedia Technology (IC-BNMT), 2010
3rd IEEE International Conference on. pp. 668–673 (2010)

3. Martins, V.T., Fonte, D., Henriques, P.R., da Cruz, D.: Plagiarism Detection: A
Tool Survey and Comparison. In: Pereira, M.J.V., Leal, J.P., Simões, A. (eds.) 3rd
SLATE. OASIcs, vol. 38, pp. 143–158. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany (2014), http://drops.dagstuhl.de/opus/volltexte/
2014/4566

4. Parr, T.J., Quong, R.W.: ANTLR: A predicated-LL(k) parser generator. Software—
Practice and Experience 25(7), 789–810 (1995), http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.15.70

178 Vítor T. Martins, Pedro Rangel Henriques and Daniela da Cruz

SLATE’2015

Efficient representation of RDF datasets

Jakub Swacha1, Szymon Grabowski2

1 University of Szczecin, Institute of Information Technology in Management,
Mickiewicza 64, 71-101 Szczecin, Poland

jakubs@uoo.univ.szczecin.pl
2 Lodz University of Technology, Institute of Applied Computer Science,

Al. Politechniki 11, 90–924 Lódź, Poland
sgrabow@kis.p.lodz.pl

Abstract. The constant growth of structured data, often in the form
of RDF, demands for efficient compression methods, to facilitate their
storage and transmission. We propose an RDF compression algorithm
that produces a succinct representation of RDF datasets. It consists of
two stages. The first splits the input triples into multiple streams, and
applies tailored compaction techniques for each stream. In the second,
a general-purpose compression is applied. We experimentally show on a
number of datasets that the proposed algorithm achieves compression
ratios significantly better than the RDF compressors known from the
literature.

1 Introduction

The Resource Description Framework (RDF) is a family of W3C specifica-
tions used for modeling information on the Web. RDF is a vital part of the
Semantic Web vision in which ultimately all information on the Internet is
machine-processable, shifting the (still dominating) document-centric perspec-
tive to the data-centric one. Although still in infancy, large RDF datasets ap-
pear and grow at a fast pace, currently containing in total over 25 billion triples
(http://www4.wiwiss.fu-berlin.de/lodcloud/).

RDF statements have a subject, a predicate (also known as a property) and
an object term. The domain of subjects and objects are typically partially shared.
Note that an RDF dataset may be perceived as a directed labeled graph, with
possibly more than a single label (or labeled edge) between a subject and an
object.

Some RDF domains have been adopted, for example, in life sciences (e.g.,
Uniprot), geography (e.g., Geonames), sensor data from weather stations (Linked-
SensorData) and open government (e.g., U.S. data.gov, U.S. Census data). The
result of a notable effort is also DBpedia, a dataset containing extracted data
from Wikipedia, with about 2.6M concepts described by 247M triples.

This growth raises challenges and requires a succinct representation of the
RDF repositories, with two goals in mind: possibly small compressed size for
distribution and exchange, and possibly small representation supporting queries.

IV Symposium on Languages Applications and Technologies Pages 179–188
18th and 19th June, Madrid, Spain 978-84-606-8762-7

Originally (in 1999) XML syntax for RDF data model was recommended but
other serialization choices are also in use and even gain popularity. One of these
alternatives is N-Triples (http://www.w3.org/2001/sw/RDFCore/ntriples/),
a line-based plain-text format.

The outline of this article is as follows. In the next section we give a brief
outline of the RDF compression area. Section 3 presents our algorithm, and its
experimental results are shown in Section 4. The last section concludes.

2 Related work

RDF compression is a relatively young research topic. Early approaches map
RDF to a relational database. This can be achieved basically using one of three
possibilities. The simplest and most natural is just to store all triples in a single
3-attribute table [5], an approach known under the name of a triple-store and
used in the RDF storage systems Jena, Oracle, Sesame and 3store. Since URIs
and literals tend to reoccur, and are relatively long, many such solutions do not
store entire strings in the table, substituting them with their shorter versions
or mapping them to numerical IDs. Still, in [1] it was shown that triple-stores
hardly scale if the number of triples exceeds 50 millions.

An alternative, known for faster data access, are property tables. There are
two variants of this approach. In the clustered property tables variant, several
tables are built and the attributes (columns) in each are properties common
to the triples stored in those tables. The left-over triples are stored in a triple
table. In a second variant, a property-class table, the type property of subjects
is used to cluster similar sets of subjects. Property tables can reduce subject-
subject self-joins of the triples tables, yet if a query requires combining data
from several tables, they become problematic [19, 1]. Abadi et al. [1] point out
other issues with property tables: many NULL values in the tables (since real
RDFs are not very structured or complete) and the (surprising) abundance of
multi-valued attributes, even some that seemingly should be single-valued (title
of a book). The former deteriorates the performance, the latter requires storing
multi-valued properties as e.g. lists (together with other attributes in the same
table), which complicates query handling.

Yet another RDBMS-based approach, called vertical partitioning, is to have
one table per one property [1]. In other words, its idea is to group triples by
predicate and thus to obtain many 2-attribute tables, one for each predicate
value (in many cases the number of used predicates is indeed small, e.g. less
than 200).

Other works should also be mentioned: Hexastore [18] and RDF-3X [15] sys-
tems create indexes for all six element ordering combinations. RDF-3X addition-
ally applies gap compression in leaves of the underlying B+-tree, to make the
indexes more compact. BitMap [3] also applies gap compression, for 2D matrices:
SO and OS for each predicate, PO for each subject and PS for each subject.

All the mentioned schemes are not particularly succinct. Much better re-
sults have been achieved in two works from the same team. In [8] a compres-

180 Jakub Swacha and Szymon Grabowski

SLATE’2015

sion scheme without random access to data (although with some random access
friendly helper structures) was presented, grouping triples with the common sub-
ject to adjacency lists, and storing ordered object IDs for each property value
bounded with that particular subject. The obtained sequences are then encoded
statistically (with Huffman encoding as a major component) and the dictionary
of strings (for S, P , and O values) is encoded with PPMd3.

Finally, in [2] a scheme offering both good compression and fast query han-
dling was proposed. This is based on the k2-tree [4] data structure, being a
pointerless variant of the well-known quad-tree. In the RDF case, for each
property value a single k2-tree is kept, representing a binary matrix of size
|SO|+ |S−SO|× |SO|+ |O−SO|, where SO is the set of common subjects and
objects. Note that this matrix is rectangular (rather than square) but because
of the partitioning nature of the k2-tree, along both dimensions 0-cells will be
padded, to the nearest power of k.

As the graph structure and the dictionary of strings are completely different
components, no wonder that works focusing on a single aspect of RDF com-
pression also exist. Mart́ınez-Prieto et al. [14] consider efficient RDF dictionary
compression. They consider several variants, more compression or more access
time oriented, and utilize algorithmic techniques like hashing, front coding and
FM-indexing, to name a few. Other researchers in this area focus on scalable
parallel solutions [17, 6], e.g. using the MapReduce paradigm.

Considering the graph structures, recent years also brought a few novel con-
cepts. Joshi et al. [12] managed to losslessly prune over 50% of the original triples
for several popular datasets, using the idea of inferring triples from a set of logical
rules derived from the given dataset. To give a toy example, if the dataset con-
tains the triples 〈A, fatherOf,B〉, 〈B, fatherOf,C〉 and 〈A, grandfatherOf,C〉,
the last of them may be inferred from the previous two, given an ontology ex-
plaining the connection between the relations “fatherOf” and “grandfatherOf”.

A similar approach was taken by Pan et al. [16], who replace a frequently
occurring graph pattern with a generalized triple. To give an example, if the
pattern 〈?x, a, foaf : Person〉, 〈?x, a, dbp : Person〉 appears often (as it actually
happens in the DBpedia dataset), a type T may be introduced, along with a
rule to expand T to foaf: Person and dbp: Person. In this way, the single triple
〈?x, a, T 〉 would represent the pattern above.

Jiang et al. [11] proposed two algorithms. In one, they label each object
and subject in the RDF graph with “type” and reduce the number of nodes by
combining those with the same type and related neighborhoods. In the other
variant, they contract the graph by removing nodes having only one neighbor
after passing the information about the node to remove to its neighbor.

Hernández-Illera [10] exploit the so-called predicate families, i.e., possible
pairs of predicates and subjects. As in real datasets their number is much less
than the combinatorial product of all existing values, there is a clear redundancy
which may be removed. Similarly, there exists a redundancy in pairs of predicates

3 http://www.compression.ru/ds/ppmdj1.rar (PPMd, var. J rev. 1, May 10, 2006,
by D. Shkarin)

Efficient representation of RDF datasets 181

SLATE’2015

and objects. The proposed algorithm, HDT++, produces archives for large datasets
by 10–13% smaller than the k2-triples compressor [2].

A good survey to graph compression, including RDF compression, was re-
cently published by Maneth and Peternek [13].

3 The proposed algorithm

The proposed algorithm is aimed at semantically lossless compression of RDF
datasets. Our only goal was to improve compression efficiency, which would
help to distribute large RDF datasets. Therefore, we do not aim at providing
the capability of search without decompression, however most of the solutions
presented here could also be applied to a search-capable compression scheme,
and investigating this opportunity will be our future work.

3.1 The general approach

The following list sums up the key characterics of our approach.

1. Separation of semantic and statistical encoding. The RDF-specialized trans-
formations are performed as the first stage, whose output is compressed in
the second stage with a general-purpose compression algorithm.

2. Separation of graph and dictionary compression. The graph contains only
numeric identificators, which can be translated to the actual subjects, pred-
icates, and objects using dictionaries. It was chosen to reduce the design
complexity of the algorithm.

3. Splitting the content. The RDF dataset components that are of a distinct
semantic type (e.g., subjects vs. objects) or consist of similar values (e.g.,
unmatched string fragments vs. match lengths) are put into separate streams.
This helps to obtain more skewed distributions and allows patterns to form,
which can be exploited by the second-stage algorithm, which compresses the
separate streams, and outputs a single distributable file.

4. Reordering the content. The aim is to form a pattern that could be effectively
encoded. The primary examples are: sorting the triples (so that at least
the first triple component forms a non-decreasing sequence, thus becomes
extremely prone to delta encoding), putting the triples in (object, subject,
predicate) order (so that the highest entropy component becomes the one to
be most effectively compressed after sorting with delta/run-length encoding),
moving the numbers to the end of string (so that longer matches can be found
as the numbers are often the most randomized part of strings).

5. Effective number encoding. The numbers represented in input formats as
text are encoded in binary form, using all bits available in every byte.

6. Exploiting local redundancy. As similar values tend to appear next to each
other in respective streams, we apply delta and run-length encoding to re-
move this redundancy or make it more prone to second-stage compression.

We called our approach Objects-First Representation (OFR), because of the
order of triple elements.

182 Jakub Swacha and Szymon Grabowski

SLATE’2015

3.2 Phases of the algorithm

As noted above, the proposed algorithm consists of two stages: (1) semantic
encoding of the RDF dataset content, and (2) statistical encoding and merging
of the stage 1 output. As stage 2 simply involves the use of a general-purpose
compression algorithm, below we shall only describe the phases of stage 1.

Parsing input RDF dataset. The first phase decodes the RDF dataset from
its input representation. For every input line, first it checks its correctness. It
is not a strict check, however errors that would cause failure of the subsequent
compression phases are detected. Minor errors (e.g., unescaped UNICODE char-
acters) are corrected, lines containing major errors (e.g., missing URI closing
bracket) are put into separate errorlines output stream. Also, lines that do not
contain triples (notably prefix definitions and comments) are put into separate
streams. The lines considered correct are parsed into subject, predicate and ob-
ject parts. The numbers are found and moved to the end of string, with their
original places of occurence marked with zeros. The language and datatype in-
formation (sometimes appended to object literals) is extracted and replaced
with a numerical identifier, with the original moved to a respective dictionary.
The triple elements are then classified depending on their content type (defined
name, URI, or literal), and queried in a respective dictionary (there are nine
combinations of element and content types, but only six are valid in RDF, hence
there are six main dictionaries; the two additional ones are for languages and
datatypes). If an element is not found in a given dictionary, it is added, and has
a new unique ID assigned. The three elements’ IDs form a triple of numbers,
which is appended to a list.

Sorting. All the main dictionaries are sorted lexicographically. New IDs are
assigned to every dictionary item that (i) reflect the sorted order and (ii) ensure
that the IDs for every element type are unique (e.g., no object literal has the
same ID as any object URI). The triple list is updated by replacing all the old
IDs with the new ones. Then, the triple list is sorted in the increasing order
determined by object ID, then subject ID, then predicate ID.

Encoding triples. The object ID’s are encoded as run-lengths of series of
zeros (denoting a number of triples referring to the same object) or ones (de-
noting a number of different objects). This is all that is needed for decoding,
as the triples are sorted by object ID, therefore the consecutive objects in the
triple list can only differ by having an ID increased by one. The subject IDs are
encoded differently, depending on whether it is a first encountered subject for
a given object (leading subject), or not (consecutive subject), to better exploit
the non-decreasing order of the consecutive subjects introduced by sorting. Each
but the very first leading subject ID is compared to the preceding one. If the
difference is small, it is encoded using a single byte to the subjects.hi stream,
otherwise, a range identifier is encoded using a single byte to the subjects.hi

Efficient representation of RDF datasets 183

SLATE’2015

stream, whereas the remaining bits (pointing to the position within the range)
are encoded to the subjects.lo stream. The consecutive subject IDs are delta- and
run-length-encoded into three streams (subjects.delta for prefixes, subjects.rle for
run-length subranges, subjects.lo for remainders). The predicate IDs are simply
put to the predicates stream using a minimum possible number of bytes (taking
into consideration the maximum predicate ID). Delta and run-length encoding
was also tried with the predicates stream, and although it considerably reduced
its size, the final effect, after applying second-stage compression, was found to
be negative on test datasets.

Encoding dictionaries. Each of the six main dictionaries is encoded in the
following steps:

1. A dictionary element is matched to the preceding one. The match length is
delta-encoded and put to the matchlens stream.

2. The unmatched part (including number markers but not including the num-
bers themselves) is put to the dict stream.

3. The number buckets (see steps 4 and 5) that were kept for offsets within
the unmatched part are closed, with their content flushed into the deltas.hi
and deltas.lo streams. Note that this grouping of numbers and delaying their
output until a sequence is finished helps patterns to form and increases local
redundancy, which is to be exploited by the second-stage compression.

4. The numbers that were encountered in the unmatched part (leading num-
bers) are separated into prefix (range identifier) and remainder (range po-
sition) parts, and put, respectively into the nums.hi and nums.lo streams.
There are special prefix ranges reserved for numbers around 2000 and digits
preceded by a single zero (e.g. 01), aimed at encoding months, hours, and
popular years in a single byte. Moreover, encountering a number causes a
new bucket to be initialized. The bucket will contain numbers encountered
at the same offset in subsequent matches (see step 5).

5. The numbers that were encountered in the matched part (consecutive num-
bers) are delta- and run-length-encoded into a respective bucket of numbers,
again with prefix and remainder separated. There are special prefix ranges
reserved for 1000 and further powers of 10, so that such incrementals can be
encoded in a single byte.

Because of their rather negligible size, the additional dictionaries (languages and
datatypes) are passed to the second-stage compressor in their original format.

Decompression is a much simpler procedure. First, the additional dictionaries
are read. Then, one after another, the main dictionaries are decompressed in
three steps: (1) strings (without numbers) are reproduced using the content
of the matchlens and dict streams, as well as the additional dictionaries; (2)
the strings are analyzed to obtain number bucket sizes; (3) the numbers are
decoded and inserted into places held by markers. Next, the triple element lists
are decoded: (1) the object ID list; (2) the subject ID list; (3) the predicate ID
list. Then, the lines that did not contain triples are copied to the beginning of

184 Jakub Swacha and Szymon Grabowski

SLATE’2015

Input triples:
<http://example/s1> <http://example/p> "o3_5"^^<http://example/dt> .

<http://example/s2> <http://example/p> "o7_7z"@en .

Dictionaries:
Datatypes (1): <http://example/dt>
Languages (1): en

Subject URIs:
Items (2): "http://example/s0",""
Match lengths (2): 0, 17
Numbers (1): 1
Deltas (1): 1 (as 2 − 1 = 1)

Predicates:
Items (1): "http://example/p"
Match lengths (1): 0

Object literals:
Items (2): "o0^0", "z@0"
Match lengths (2): 0, 2
Numbers (1): 3, 5
Deltas (1): 4 (as 7 − 3 = 4), 2 (as 7 − 5 = 2)

Triples:
Objects: 0, 1 (as 1 − 0 = 1)
Subjects: 0, 1 (as 1 − 0 = 1)
Predicates: 0, 0

Fig. 1. An example of triple processing in the OFR algorithm

the output (decompressed) file. Finally, the original triples are reconstructed by
replacing the IDs with respective dictionary items, and appended at the end of
the output file. Note that the order of triples is not preserved, which is not a
problem, as the order of lines in the N-Triples format is irrelevant. This is why
we called our scheme semantically lossless. Fig. 1 shows a toy example.

3.3 Implementation details

A proof-of-concept implementation of the proposed algorithm has been devel-
oped in C++ with the following design decisions:

1. The openhash of Zilong Tan’s ulib library4 was used to implement the main
and additional dictionaries. This solution was found experimentally to handle

4 Z. Tan, ulib. An efficient library for developing high-performance and scalable sys-
tems in C and C++, 2012, http://code.google.com/p/ulib/.

Efficient representation of RDF datasets 185

SLATE’2015

large dictionaries much faster than the hash map of the Standard Template
Library.

2. The Standard Template Library’s sort has been used for sorting both the
triples and the dictionaries.

3. The object encoder uses the following range widths: 80 for prefixes of run-
lengths of zeros, 32 for prefixes of run-lengths of ones, 16 for prefixes of
run-lengths of (zero, one) pairs, and 128 for the remainders.

4. The consecutive subject encoder uses the following range widths: 32 for pre-
fixes of run-lengths of zeros, 16 for prefixes of run-lengths of ones, 15 for
small numbers (no remainder), 128 for numbers with a remainder one byte
long, 64 for numbers with a remainder two bytes long.

5. The leading subject encoder uses ranges dependent on the number of sub-
jects. The width of the range for prefixes is the minimum number that allows
to encode the remainder with a static length code using a minimum num-
ber of bytes (multiples of 8 bits). The remaining codespace is used for delta
coding (half for small numbers, the other half for prefixes of larger numbers,
with a remainder one byte long).

6. Match length delta encoder writes them as bytes using (repetitions of) one
special value (255) to encode values larger than 254.

7. The leading numbers encoder uses the following range widths: 112 for small
numbers (no remainder), 40 for numbers with a remainder one byte long, 31
for numbers with a remainder two bytes long, 6 for numbers with a remainder
three bytes long, 2 for larger numbers, 10 for digits preceded by a single
zero, 52 for numbers from the range 1969-2020, 2 for run-length encoding
of leading zeros. Thus, e.g., 2004 can be encoded using just one byte, 10005
using just two bytes (in total), 2000007 just three, and 100000009 just four.

8. The consecutive numbers encoder uses the following range widths: 128 for
small numbers (no remainder), 47 for numbers with a remainder one byte
long, 31 for numbers with a remainder two bytes long, 6 for numbers with
a remainder three bytes long, 17 for prefixes of run-lengths of zeros, 17 for
prefixes of run-lengths of other numbers, 5 for the consecutive powers of 10,
starting with 1000, the remaining 5 for other purposes (e.g. larger numbers
and marking change in the number of leading zeros).

9. At most 48 streams are produced at the end of stage one, and passed to the
stage-two compressor.

4 Experimental results

We experimentally tested our implementation of the proposed compression scheme
(OFR) on a number of datasets in N-Triples serialization format. Table 1 presents
compression ratios (in per cent) of several compressors. We ran HDT and our
algorithm, with two backend compressors: zip -9 (max compression) and LZMA
(the default compression algorithm used in the 7z archiver, http://www.7-zip.
org), and copied the available results of other prominent RDF compressors from
the literature. More specifically, the JHD is the algorithm by Joshi et al. [12]

186 Jakub Swacha and Szymon Grabowski

SLATE’2015

and its results are taken from the cited work. Table 1 shows that the proposed
OFR algorithm achieves clearly best compression ratios across all test datasets.

no. triples inp. size HDT HDT best OFR OFR
(MB) +zip +7z other +zip +7z

AEMET-1 1,018,815 139.2 0.55 0.41 0.8c 0.26 0.24

AEMET-2 2,788,429 517.8 0.70 0.30 1.1b,c 0.09 0.08

CN 137,484 18.8 0.95 0.80 0.78d 0.34 0.22
Events-Wikipedia 359,028 34.2 5.03 — — 3.43 3.07

Jamendo 1,047,950 151.2 3.44 2.58 3.19d 2.58 2.02
LinkedMbd 6,147,996 891.6 1.88 1.50 1.01a 0.90 0.79

Mix 93,048 12.3 3.03’ 2.65’ 4.9b 2.18 1.93
Petrol 3,356,616 508.9 1.83 1.62 2.6c 1.86 1.62

Table 1. Compression ratio comparison. The results are given in per cent of the original
dataset size. The results of HDT on the Mix dataset, marked with a prime symbol (’),
are over-optimistic, since the compressor missed about 5% of the triples. The column
“best other” denotes the best, to our knowledge, compression ratio from other programs
reported in the literature. a is from the k2-triples result, copied from [10]. b is from the
algorithm RDSZ [9], as reported in [7]. c is from ERI-4k-Nodict [7], as reported in the
same work. d is the JHD [12] result, with bzip2 backend compression.

5 Conclusion

We presented an RDF compression scheme surpassing the existing ones in com-
pression ratio. This was achieved thanks to careful parsing of the RDF con-
tent, reordering it, distributing into multiple streams, and encoding each stream
using, first, the most adequate specialized techniques, and then, an efficient
general-purpose compression algorithm, such as LZMA. The future work will
be to develop a query-supporting RDF compressed representation, based on the
presented solution.

References

1. D. J. Abadi, A. Marcus, S. Madden, and K. J. Hollenbach. Scalable semantic web
data management using vertical partitioning. In Proceedings of the 33rd Interna-
tional Conference on Very Large Data Bases, pages 411–422. ACM, 2007.

2. S. Álvarez-Garćıa, N. R. Brisaboa, J. D. Fernández, and M. A. Mart́ınez-Prieto.
Compressed k2-triples for full-in-memory RDF engines. In A Renaissance of Infor-
mation Technology for Sustainability and Global Competitiveness. 17th Americas
Conference on Information Systems. Association for Information Systems, 2011.

3. M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler. Matrix “bit” loaded: A scalable
lightweight join query processor for RDF data. In Proc. of the 19th International

Efficient representation of RDF datasets 187

SLATE’2015

Conference on World Wide Web, WWW 2010, Raleigh, North Carolina, USA,
April 26-30, 2010, pages 41–50. ACM, 2010.

4. N. Brisaboa, S. Ladra, and G. Navarro. Compact representation of web graphs
with extended functionality. Information Systems, 39(1):152–174, 2014.

5. J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A generic architec-
ture for storing and querying RDF and RDF schema. In The Semantic Web -
ISWC 2002, 1st International Semantic Web Conference, Sardinia, Italy, June
9-12, 2002, Proc., volume 2342 of LNCS, pages 54–68. Springer, 2002.

6. L. Cheng, A. Malik, S. Kotoulas, T. E. Ward, and G. Theodoropoulos. Scalable
RDF data compression using X10. CoRR, abs/1403.2404, 2014.

7. J. D. Fernández, A. Llaves, and Ó. Corcho. Efficient RDF interchange (ERI) format
for RDF data streams. In The Semantic Web - ISWC 2014 - 13th International
Semantic Web Conference, Riva del Garda, Italy, October 19-23, 2014. Proceed-
ings, Part II, volume 8797 of Lecture Notes in Computer Science, pages 244–259.
Springer, 2014.

8. J. D. Fernández, M. A. Mart́ınez-Prieto, and C. Gutierrez. Compact representation
of large RDF data sets for publishing and exchange. In The Semantic Web - ISWC
2010 - 9th International Semantic Web Conference, Revised Selected Papers, Part
I, volume 6496 of LNCS, pages 193–208. Springer, 2010.

9. N. Fernández, J. Arias, L. Sánchez, D. Fuentes-Lorenzo, and Ó. Corcho. Rdsz: An
approach for lossless rdf stream compression. In The Semantic Web: Trends and
Challenges, pages 52–67. Springer, 2014.

10. A. Hernández-Illera, M. A. Mart́ınez-Prieto, and J. D. Fernández. Serializing RDF
in compressed space. In Data Compression Conference (DCC), 2015.

11. X. Jiang, X. Zhang, F. Gao, C. Pu, and P. Wang. Graph compression strate-
gies for instance-focused semantic mining. In Linked Data and Knowledge Graph
- 7th Chinese Semantic Web Symposium and 2nd Chinese Web Science Confer-
ence, Revised Selected Papers, volume 406 of Communications in Computer and
Information Science, pages 50–61. Springer, 2013.

12. A. K. Joshi, P. Hitzler, and G. Dong. Logical linked data compression. In The
Semantic Web: Semantics and Big Data, 10th International Conference, volume
7882 of LNCS, pages 170–184. Springer, 2013.

13. S. Maneth and F. Peternek. A survey on methods and systems for graph compres-
sion. CoRR, abs/1504.00616, 2015.

14. M. A. Mart́ınez-Prieto, J. D. Fernández, and R. Cánovas. Compression of RDF
dictionaries. In A. Press, editor, 27th ACM International Symposium on Applied
Computing (SAC’2012) - Track The Semantic Web and Applications (SWA), pages
1841–1848. ACM, 2012.

15. T. Neumann and G. Weikum. The RDF-3X engine for scalable management of
RDF data. VLDB Journal, 19(1):91–113, 2010.

16. J. Z. Pan, J. M. Gómez-Pérez, Y. Ren, H. Wu, H. Wang, and M. Zhu. Graph
pattern based RDF data compression. In Semantic Technology - 4th Joint Interna-
tional Conference, Revised Selected Papers, volume 8943 of LNCS, pages 239–256.
Springer, 2014.

17. J. Urbani, J. Maassen, N. Drost, F. J. Seinstra, and H. E. Bal. Scalable RDF
data compression with MapReduce. Concurrency and Computation: Practice and
Experience, 25(1):24–39, 2013.

18. C. Weiss, P. Karras, and A. Bernstein. Hexastore: Sextuple indexing for semantic
web data management. PVLDB, 1(1):1008–1019, 2008.

19. K. Wilkinson. Jena property table implementation. In In SSWS, 2006.

188 Jakub Swacha and Szymon Grabowski

SLATE’2015

Reducing large semantic graphs to improve
semantic relatedness

José Paulo Leal and Teresa Costa

CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto
Porto, Portugal
zp@dcc.fc.up.pt

teresa.costa@dcc.fc.up.pt

Abstract. In the previous research the authors developed a family of
semantic measures that are adaptable to any semantic graph, being auto-
matically tuned with a set of parameters. The research presented in this
paper extends this approach by also tuning the graph. This graph reduc-
tion procedure starts with a disconnected graph and incrementally adds
edge types, until the quality of the semantic measure cannot be further
improved. The validation performed used the three most recent versions
of WordNet and, in most cases, this approach improves the quality of
the semantic measure.

Keywords: Semantic similarity; Linked Data; Semantic Graph

1 Introduction

This paper is part of an ongoing research [12, 13, 6] aiming at the development of
a methodology for creating semantic measures taking as source any given seman-
tic graph. This methodology, called SemArachne, does not require any particular
knowledge of the semantic graph and is based on the notion of proximity rather
than distance. It considers virtually all paths connecting two terms with weights
depending on edge types. SemArachne automatically tunes these weights for a
given semantic graph. The validation of this process was performed using Word-
Net 2.1 [8] with WordSimilarity 353 [9] data set with results better than those
in the literature [13].

WordNet 2.1 has a smaller graph when compared with the recent versions
of it or even other semantic sources, such as DBpedia or Freebase. Not only the
number of nodes and edge types increases as the number of graph arcs expands
enabling them to relate semantically a large number of terms, making graphs
not only larger but also denser. Compute proximity in these conditions comes
with a price. Since SemArachne considers all the paths, the number of paths to
process tends to increase.

A rough measure of graph density is the maximum degree of all its nodes.
However, consider it can be misleading since there may be a special node where
all the edge types are applied. The real challenge is then the graph average node
degree. SemArachne computes all paths connecting a pair of terms up tp a given

IV Symposium on Languages Applications and Technologies Pages 189–198
18th and 19th June, Madrid, Spain 978-84-606-8762-7

length. The node degree is the branching factor for the paths crossing that node.
Hence, a high average node degree reduces the efficiency of the SemArachne
measure.

The alternative explored in this paper to reduce graph density is to reduce
the number of edge types while keeping all nodes, thus preserving the potential
to relate a larger set of terms. The approach is to incrementally build a subgraph
of the original semantic graph. This process starts with a full disconnected graph
containing all the nodes. At each iteration, a new edge type is added until the
semantic measure quality stops to improve. The result of this process is a sub-
graph where the semantic quality is maximized. The semantic measure used by
SemArachne [12] had also some minor adjustments.

The rest of the paper is organized as follows. The next section surveys the
state of the art on semantic relatedness. Section 3 summarizes previously pub-
lished work and Section 4 details the approach followed to measure semantic
relatedness is larger graphs. The experimental results and their analysis can be
found in Section 5. Finally, Section 6 summarizes what was accomplished so far
and identifies opportunities for further research.

2 Related Work

Semantic measures are widely used today to measure the strength of the se-
mantic relationship between terms. This evaluation is based on the analysis of
information describing the elements extracted from semantic sources.

There are two different types of semantic sources. The first one are unstruc-
tured and semi-structured texts, such as plain text or dictionaries. Texts have
evidences of semantic relationships and it is possible to measure those relation-
ships using simple assumptions regarding the distribution of words. This source
type is mainly used by distributional approaches.

The second type of semantic sources is more general and includes a large
range of computer understandable resources where the knowledge about elements
is explicitly structured and modeled. Semantic measures based on this type of
source rely on techniques to take advantage of semantic graphs or higher formal
knowledge representations. This source type is mainly used by knowledge-based
approaches.

Distributional approaches rely on the distributional hypothesis[11] that states
that words in a similar context are surrounded by the same words and are likely
to be semantically similar. There are several methods following this approach,
such as the Spatial/Geometric methods [10], the Set-based methods [5], and the
Probabilistic methods [7].

The knowledge-base approaches rely on any form of knowledge representa-
tion, namely semantic graphs, since they are structured data from which seman-
tic relationships can be extracted. They consider the properties of the graph and
elements are compared by analysing their interconnections and the semantics of
those relationships. Several methods have been defined to compare elements in
single and multiple knowledge bases, such as Structural methods [22, 24, 14,

190 José Paulo Leal and Teresa Costa

SLATE’2015

15], Feature-based methods [4, 27, 23] and Shannon’s Information Theory meth-
ods [16, 21, 19, 20].

Knowledge-based approaches have the advantage of controlling which edge
types should be considered when comparing pairs of elements in the graph. They
are also easier to implement than distributional methods and have a lower com-
plexity. However they require a knowledge representation containing all the ele-
ments to compare. On the other hand, using large knowledge sources to compare
elements is also an issue due of high computational complexity.

There are also hybrid approaches [24, 2, 3, 18] that mix the knowledge-based
and the distributional approaches. They take advantage of both texts and knowl-
edge representations to estimate the semantic measure.

3 Previous work

This section summarizes previously published work [12, 13] that is the core of
SemArachne and relevant for the graph reduction process described in the next
section. The first subsection details on the semantic measure and the following
subsection on the quality measure. The last subsection details on the fine tune
process.

3.1 Semantic Measure

A semantic graph can be defined as G = (V,E, T,W) where V is the set of
nodes, E is the set of edges connecting the graph nodes, T is the set of edge
types and W is a mapping of edge types to weight values. Each edge in E is a
triplet (u, v, t) where u, v ∈ V and t ∈ T .

The set W defines a mapping w : T 7→ Z. The bound of the absolute weight
values1 for all edge types is defined by

Ω(G) ≡ maxti∈T | w(ti) |

To measure the proximity between a pair of terms it is necessary to build a
set of distinct paths that connects them by walking through the graph. A path
p of size n ∈ N+ is a sequence of unrepeated nodes u0 . . . un∀0≤i,j≤nui 6= uj ,
linked by typed edges. It must have at least one edge and cannot have loops. A
path p is denoted as follows:

p = u0
t1−→ u1

t2−→ u2 . . . un−1
tn−→ un

The weight of an edge depends on its type. The weight of a path p is the sum
of weights of each edge, ω(p) = w(t1) +w(t2) + . . .+w(tn). The set of all paths
of size n connecting the pair of concepts is defined as follows and its weight is
the sum of all its sub paths.

Pnu,v = {u0
t1−→ u1 . . . un−1

tn−→ un : u = uo ∧ v = un ∧ ∀0≤i,j≤n ui 6= uj}
1 This semantic measure accepts negative weights for some types of edges.

Reducing large semantic graphs to improve semantic relatedness 191

SLATE’2015

The semantic measure is based on the previous definition and also considers
the path length. ∆ is the degree of each node in each path. The proximity
function r is defined by the following formula.

r(u, v) =


1 ← u = v

1
Ω(G)

∞∑
n=1

1
2n.n.∆(G)n

∑
p∈Pn

u,v

ω(p) ← u 6= v (1)

Given a graph with a set of nodes V , where r : V ×V 7→ [−1, 1], the proximity
function r takes a pair of terms and returns a “percentage” of proximity between
them. The proximity of related terms must be close to 1 and the proximity of
unrelated terms must be close to -1.

This definition of proximity depends on weights of transitions. The use of
domain knowledge to define them has been proved a näıve approach since an
“informed opinion” frequently has no evidence to support it and sometimes is
plainly wrong. Also, applying this methodology to a large ontology with several
domains can be hard. To be of practical use, the weights of a proximity based
semantic relatedness measure must be automatically tuned. To achieve it, it
is necessary to estimate the quality of a semantic measure for a given set of
parameters.

3.2 Quality Measure

The purpose of the quality measure is to compute the quality of a semantic
measure defined by (1) for a particular set of parameters. In order to simplify
and optimize the quality measure, it is necessary to factor out weights from the
semantic measure definition. Thus its quality may be defined as function of a set
of weight assignment.

The first step is to express the semantic measure in terms of weights of edge
types. Consider the set of all edge types T with]T = m and the weight of its
elements w(t),∀t ∈ T . The second branch of (1) can be rewritten as follows,
where ci(a, b), i ∈ {1..m} are the coefficients of each edge type.

r(a, b) = α

∞∑
n1

β
∑
Pj∈P

∑
t∈Pj

w(t) =

m∑
i=1

ci(a, b) · w(ti)

Edge type weights are independent of the arguments of r but the coefficients
that are factored out depend of these arguments. It is possible to represent
both the weights of edges and their coefficients, (w(t1), w(t2), . . . , w(tk)) = w
and (c1(a, b), c2(a, b), . . . , cm(a, b) = c(a, b)) respectively, by defining a standard
order on the elements of T . This way the previous definition of r may take as
parameter the weight vector, as follows

w(a, b) = c(a, b) ·w

The method commonly used to estimate the quality of a semantic relatedness
algorithm is to compare it with a benchmark data set containing pairs of words

192 José Paulo Leal and Teresa Costa

SLATE’2015

and their relatedness. The Spearman’s rank order correlation is widely used to
make this comparison.

Consider a benchmark data set with the pairs of words (ai, bi) for 1 ≤ i ≤ k,
with a proximity xi. Given the relatedness function rw : S×S 7→ < let us define
yi = rw(ai, bi). In order to use the Spearman’s rank order coefficient both xi
and yi must be converted to the ranks x′i and y′i.

The Spearman’s rank order coefficient is defined in terms of xi and yi,
where xi are constants from the benchmark data set. To use this coefficient
as a quality measure it must be expressed as a function of w. Considering that
y = (rw(ai, bi), . . . , rw(an, bn)) then y = Cw, where matrix C is a n×m matrix
and where each line contains the coefficients for a pair of concepts and each
column contains coefficients of a single edge type. Vector w is a m × 1 matrix
with the weights assigned to each edge type. The product of these matrices is
the relatedness measure of a set of concept pairs.

Considering ρ(x,y) as the Spearman’s rank order of x and y, the quality
function q : <n 7→ < using the benchmark data set x can be defined as

qx(w) = ρ(x, Cw) (2)

The next step in the SemArachne methodology is to determine a w that
maximizes this quality function.

3.3 Fine Tuning Process

Genetic algorithms are a family of computational models that mimic the process
of natural selection in the evolution of species. This type of algorithms uses
concepts of variation, differential reproduction and heredity to guide the co-
evolution of a set of problem solutions. This algorithm family is frequently used
to improve solutions of optimization problems [29].

In the SemArachne the candidate solution – individual – is a weight values
vector. Consider a sequence of weights (the genes), w(t1), w(t2), . . . , w(tk), tak-
ing integer values in a certain range, in a standard order of edge types. Two
possible solutions are the vectors v = (v1, v2, . . . , vk) and t = (t1, t2, . . . , tn).
Using crossover, it is easy to recombine the “genes” of both “parents” resulting
in u = (v1, t2, . . . , tn−1, vk).

This is a closer representation of the domain than the typical binary one. It
can also be processed more efficiently with large number of weights. In this tuning
process the genetic algorithm only have a single kind of mutation: randomly
selecting a new value for a given “gene”.

The fitness function plays a decisive role in the selection of the new generation
of individuals. In this case, individuals are the vector of weight values w, hence
the fitness function is in fact the quality function previously defined in (2).

4 Graph Reduction Procedure

The previous section explained how to tune the weights of a semantic measure
by using a genetic algorithm with an appropriate quality function. This section

Reducing large semantic graphs to improve semantic relatedness 193

SLATE’2015

introduces a procedure for selecting a subgraph of the original semantic source
with a reduced density by repeatedly applying that procedure.

Disconnected

ᵩ

ᵩ

ᵩ

ᵩ

ᵩ

ᵩ

ᵩ
ᵩ

Best Graph

1st
iteration

2nd
iteration

3rd
iteration

4th
iteration

Fig. 1. Semantic graph reduction procedure

Figure 1 depicts the overall strategy. It starts with a fully disconnected graph
by omitting all the edges. The small graph on the left in Figure 1 shows the arcs
as dotted lines to denote the original connections. When a single property (edge
type) is added to this graph a number of paths is created. If the original graph
has n property types then one can create n different subgraphs. The quality of
these graphs can be measured using the approach described in the last section.
The best of these candidates is the selected graph for the first iteration. This
process continues until the quality of the candidate graphs cannot be further
improved.

More formally, consider a semantic graph G = (V,E, T,W) where V is the
set of nodes, E is the set of edges connecting the graph nodes, T is the set of
edge types and W is a mapping of edge types to weight values. The initial graph
of this incremental algorithm is G0 = (V, ∅, ∅, ∅). This is a totally disconnected
graph just containing the nodes from the original graph, i.e. edges, types and
weights are all the empty set.

Each iteration builds a new graph Gk+1 = (V,Ek+1, Tk+1,Wk+1) based on
Gk = (V,Ek, Tk,WK). The new set of types Tk+1 has all the types in Tk. In fact,
several candidate Gik can be considered, depending on the types in T − Tk that
are added to Tk+1. The arcs of Eik+1 are those in E whose type is in T ik+1. The

194 José Paulo Leal and Teresa Costa

SLATE’2015

general idea is to select the Gik+1 that produces an higher increment on semantic
measure quality. This algorithm stops when no candidate is able to improve it.

In general, computing the semantic measure quality of Gik+1 is a time con-
suming task. However, there are some ways to make it more efficient. As shown
in Figure 1, if Gik+1 is not a connected graph then the quality measure cannot
be computed. This means that for the first iteration many G1

k+1 can be triv-
ially discarded. Moreover, if Eik+1 = Eik then the semantic quality measure is
the same. This insight can be used to speedup the iterative process. The paths
connecting pairs of concepts using arcs in Ek+1 are basically the same that used
Ek. The new paths must appear on the nodes of previous paths and can only
have arcs of types in Tk+1. This insight can be used to compute the quality of
Gik+1 incrementally based on the computation of Gik.

The generation of the sets T ik+1 is a potential issue. Ideally T ik+1 would
have just one element more than T ik. However this may not always be possible2.
Consider T i1, the candidate sets of types for the first iteration. In most cases
they will produce a disconnected graph, hence with a null semantic measure
quality. They will only produce a connected graph if the selected type creates a
taxonomy. In many cases this involves 2 types of arcs: one linking an instance
to a class, another linking a class to its super-class. To deal with this issue the
incremental algorithm attempts first to generate T ik+1 such that]T ik+1 =]T ik+1,
where] stands for set cardinality. In none of these improve the semantic measure
quality then it attempts to generate T ik+1 such that]T ik+1 =]T ik+2, and so forth.

5 Validation

The validation of SemArachne was performed using the semantic graphs of dif-
ferent versions of WordNet along with three different data sets.

WordNet3 [8] is a widely used lexical knowledge base of English words. It
groups nouns, verbs, adjectives and adverbs into synsets – a set of cognitive syn-
onyms – that expresses distinct concepts. These synsets are linked by conceptual
and lexical relationships. The validation process used three different data sets:
WordSimilarity-3534 [9] Rubenstein & Goodenough [25] (RG65) and Miller &
Charles [17] (MC30).

Table 1 compares the performance of SemArachne against the state of the
art for methods using the same knowledge-based approach. For WordNet 2.1,
SemArachne achieves a better result than those in the literature when using
WordSim-353 data set. Using WordNet 3.1 as semantic graph, SemArachne pro-
duces also a better semantic quality than those in the literature. Although results
are not the best in the WordNet 3.0, despite the data set used, they have the
same order of magnitude.

The quality of the semantic measure produced with graph reduction was vali-
dated against several approaches in the literature. An advantage of this method-

2 However, so far this situation has not yet occurred in validation.
3 http://wordnet.princeton.edu/
4 http://www.cs.technion.ac.il/ gabr/resources/data/wordsim353/wordsim353.html

Reducing large semantic graphs to improve semantic relatedness 195

SLATE’2015

Table 1. Spearman correlation of SemArachne compared with literature

Graph Data set
Edges

selected
SemArachne
correlation

Literature
correlation

Author

WordNet 2.1
(26 edge types)

MC30 14 0.81 0.82
Strube et al [28]

2006
RG65 8 0.60 0.86

WS-353 21 0.45 0.36

WordNet 3.0
(47 edge types)

MC30 16 0.80 N/A
Agirre et al [1]

2009
RG65 9 0.63 0.78

WS-353 20 0.48 0.56

WordNet 3.1
(64 edge types)

MC30 14 0.97 0.87
Siblini et al [26]

2013
RG65 8 0.94 0.92

WS-353 24 0.54 0.50

ology is the ability of measure the semantic relatedness regardless the semantic
graph used and produce comparable results for each semantic graph and data
set. It is also scalable, since it handles gradually larger graphs.

6 Conclusion

As semantic graphs evolve they become larger. Since larger graphs relate more
terms this improves their potential as semantic sources for relatedness measures.
However, these larger graphs are also a challenge, in particular to semantic mea-
sures that consider virtually all paths connecting two nodes, as is the case of
SemArachne.

The major contribution of this paper is an incremental approach to select a
subgraph with a reduced number of edge types (arcs) but with the same num-
ber of entities (nodes). This approach starts with a totally disconnected graph,
at each iteration adds an arc type that increases the quality of the semantic
measure, and stops when no improvement is possible.

These contributions were validated with different versions of WordNet, a
medium size graph typically used as semantic source for relatedness measures.
Although this is not the kind of large semantic graphs to which this approach is
targeted, it is convenient for initial tests due to its relatively small size.

In the WordNet graph the reduction of properties is not so expressive, since
the total number of properties is comparatively small. The obtained subgraphs
do not always improve the quality of the SemArachne measure, but produce a
result that is similar, and in most cases better, than best method described in
the literature for that particular graph.

The immediate objective of the SemArachne project is to extend the valida-
tion presented in this paper to other data sets and, most of all, to other graphs.
Massive graphs with very high density, such as Freebase, are bound to create
new and interesting challenges. Another important consequence of this graph
reduction procedure is that it decouples the original graph from the actual se-
mantic source. Thus SemArachne can be extended to process multiple semantic

196 José Paulo Leal and Teresa Costa

SLATE’2015

graphs (with shared labels) and create an unified semantic measure combining
their semantic power.

Acknowledgments. Project “NORTE-07-0124-FEDER-000059” is financed by
the North Portugal Regional Operational Programme (ON.2 - O Novo Norte),
under the National Strategic Reference Framework (NSRF), through the Euro-
pean Regional Development Fund (ERDF), and by national funds, through the
Portuguese funding agency, Fundação para a Ciência e a Tecnologia (FCT).

References

1. Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Paşca, M., Soroa, A.: A study
on similarity and relatedness using distributional and wordnet-based approaches.
In: Proceedings of Human Language Technologies: The 2009 Annual Conference
of the North American Chapter of the Association for Computational Linguistics.
pp. 19–27. Association for Computational Linguistics (2009)

2. Banerjee, S., Pedersen, T.: An adapted lesk algorithm for word sense disambigua-
tion using wordnet. In: Computational linguistics and intelligent text processing,
pp. 136–145. Springer (2002)

3. Banerjee, S., Pedersen, T.: Extended gloss overlaps as a measure of semantic re-
latedness. In: IJCAI. vol. 3, pp. 805–810 (2003)

4. Bodenreider, O., Aubry, M., Burgun, A.: Non-lexical approaches to identifying
associative relations in the gene ontology. In: Pacific Symposium on Biocomputing.
Pacific Symposium on Biocomputing. p. 91. NIH Public Access (2005)

5. Bollegala, D., Matsuo, Y., Ishizuka, M.: Measuring semantic similarity between
words using Web search engines. Proceedings of the 16th international conference
on World Wide Web 7, 757–766 (2007)

6. Costa, T., Leal, J.P.: Challenges in computing semantic relatedness for large se-
mantic graphs. In: Proceedings of the 18th International Database Engineering &
Applications Symposium. pp. 376–377. ACM (2014)

7. Dagan, I., Lee, L., Pereira, F.C.: Similarity-based models of word cooccurrence
probabilities. Machine Learning 34(1-3), 43–69 (1999)

8. Fellbaum, C.: WordNet. Wiley Online Library (1999)
9. Gabrilovich, E.: The WordSimilarity-353 test collection, http://www.cs.

technion.ac.il/~gabr/resources/data/wordsim353/

10. Ganesan, P., Garcia-Molina, H., Widom, J.: Exploiting hierarchical domain struc-
ture to compute similarity. ACM Transactions on Information Systems (TOIS)
21(1), 64–93 (2003)

11. Harris, Z.S.: Distributional structure. In: Papers on syntax, pp. 3–22. Springer
(1981)

12. Leal, J.P.: Using proximity to compute semantic relatedness in RDF graphs. Com-
put. Sci. Inf. Syst. 10(4) (2013)

13. Leal, J.P., Costa, T.: Multiscale parameter tuning of a semantic relatedness algo-
rithm. In: 3rd Symposium on Languages, Applications and Technologies, SLATE.
pp. 201–213 (2014)

14. Li, Y., Bandar, Z.A., McLean, D.: An approach for measuring semantic similarity
between words using multiple information sources. Knowledge and Data Engineer-
ing, IEEE Transactions on 15(4), 871–882 (2003)

Reducing large semantic graphs to improve semantic relatedness 197

SLATE’2015

15. Li, Y., McLean, D., Bandar, Z.A., O’shea, J.D., Crockett, K.: Sentence similarity
based on semantic nets and corpus statistics. Knowledge and Data Engineering,
IEEE Transactions on 18(8), 1138–1150 (2006)

16. Lin, D.: An information-theoretic definition of similarity. In: ICML. vol. 98, pp.
296–304 (1998)

17. Miller, G.A., Charles, W.G.: Contextual correlates of semantic similarity. Language
and Cognitive Processes 6(1), 1–28 (1991)

18. Patwardhan, S., Banerjee, S., Pedersen, T.: Using measures of semantic relatedness
for word sense disambiguation. In: Computational linguistics and intelligent text
processing, pp. 241–257. Springer (2003)

19. Pirró, G.: A semantic similarity metric combining features and intrinsic information
content. Data & Knowledge Engineering 68(11), 1289–1308 (2009)

20. Pirró, G., Euzenat, J.: A feature and information theoretic framework for seman-
tic similarity and relatedness. In: The Semantic Web–ISWC 2010, pp. 615–630.
Springer (2010)

21. Pirró, G., Seco, N.: Design, implementation and evaluation of a new semantic
similarity metric combining features and intrinsic information content. In: On the
Move to Meaningful Internet Systems: OTM 2008, pp. 1271–1288. Springer (2008)

22. Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a
metric on semantic nets. Systems, Man and Cybernetics, IEEE Transactions on
19(1), 17–30 (1989)

23. Ranwez, S., Ranwez, V., Villerd, J., Crampes, M.: Ontological distance measures
for information visualisation on conceptual maps. In: On the Move to Meaningful
Internet Systems 2006: OTM 2006 Workshops. pp. 1050–1061. Springer (2006)

24. Resnik, P.: Using information content to evaluate semantic similarity in a taxon-
omy. In: IJCAI. pp. 448–453 (1995)

25. Rubenstein, H., Goodenough, J.B.: Contextual correlates of synonymy. Commun.
ACM 8(10), 627–633 (1965)

26. Siblini, R., Kosseim, L.: Using a weighted semantic network for lexical semantic
relatedness. In: RANLP. pp. 610–618 (2013)

27. Stojanovic, N., Maedche, A., Staab, S., Studer, R., Sure, Y.: SEAL: a framework for
developing SEmantic portALs. In: Proceedings of the 1st international conference
on Knowledge capture. pp. 155–162. ACM (2001)

28. Strube, M., Ponzetto, S.P.: Wikirelate! Computing semantic relatedness using
Wikipedia. In: AAAI. vol. 6, pp. 1419–1424 (2006)

29. Whitley, D.: A genetic algorithm tutorial. Statistics and computing 4(2), 65–85
(1994)

198 José Paulo Leal and Teresa Costa

SLATE’2015

Enrichment and On-demand Population of Nutritional
Ontologies from XML Diets Repository

Vanesa Espín, Manuel Noguera and María V. Hurtado

Departamento de Lenguajes y Sistemas Informáticos, University of Granada
E.T.S.I.I.T., c/Daniel Saucedo Aranda s/n 18071, Granada, Spain

{vespin,mnoguera,mhurtado}@ugr.es

Abstract. Semantic Web technologies (SWTs), such as XML and OWL ontolo-
gies are increasingly being used to represent information and knowledge bases
in different domains. That is the case of agroalimentary thesauri, where infor-
mation sharing and reasoning capabilities of SWTs can be leveraged. However,
these capabilities are not indistinctly provided by each SWT. XML, although not
being considered a SWT in itself, stands at the syntactic level of the Semantic
Web stack, and is more suitable for efficient information structure and retrieval
in interactive software applications. OWL language, on the other hand, is more
suitable for background reasoning and consistency checking purposes. In this
paper, we introduce the design of the information representation and knowledge
sharing between an XML diets repository and the NutElCare (a nutritional rec-
ommender system) OWL knowledge base. In this design, XSLT transformations
play an important role, elevating the syntactic representation of the XML docu-
ments to the semantic level of OWL ontologies. Altogether, they configure a
system architecture that keeps the system timely responsive through a seamless
linkage between XML and OWL representations.

Keywords: OWL ontology, Ontology enrichment, Ontology population, Ontol-
ogy reasoning, Semantic recommender systems, XML, XSLT.

1 Introduction

Several reasons stimulate the rapid increase of the application of Semantic Web Tech-
nologies (SWTs) in the representation of information and knowledge in different soft-
ware related fields in the last years. Some of these motivations are the abilities of rea-
soning to extract meaningful conclusions from encoded knowledge and the exchange,
linkage and reuse of this knowledge from different systems, processes and applications
[13]. XML (EXtensible Markup Language) was designed for describing data in the
World Wide Web. Although it is not considered a SWT in itself, it stands at the syn-
tactic level of the Semantic Web stack. It is platform and software independent and
allows the representation, storage and exchange of data when a common syntax has
been agreed. XML it is not suitable for consistency checking or conceptual interrela-
tionship from a semantic standpoint, even in the same domain of knowledge. OWL
(Web Ontology Language), currently in OWL 2 version [14], is a formal language

IV Symposium on Languages Applications and Technologies Pages 199–208
18th and 19th June, Madrid, Spain 978-84-606-8762-7

based on Description Logics [1]. In contrast to XML, it supports the representation of
the domain knowledge through classes, properties and instances to be used in a dis-
tributed environment such as the World Wide Web [2]. Ontologies are one of the main
components of the Semantic Web. They provide universal semantics, easy knowledge
sharing and unambiguous interpretation of concepts by means of formal model-
theoretic semantics. Ontologies represented in OWL can make use of the automated
reasoning capabilities that Description Logics provide, allowing the support of this
reasoning to infer new knowledge. However, the use of an OWL ontology to represent
a big amount of structured data in which only a small part of this information is de-
manded at a required moment for inference purposes, could result in inefficient rea-
soning. In this case, a repository of XML documents for the efficient management,
storage and representation of information can be designed, and instead retrieve and
bind this information on-demand, only when it is required. Ontologies are also used in
information retrieval for indexing documents, providing a semantic classification for
the information of the documents [9]. Nevertheless, the process of linkage between
XML documents or repositories and OWL ontologies needs some operations, such as
enrichment and population of the ontology. Ontology enrichment is the task of extend-
ing an existing ontology with additional concepts and semantic relations and placing
them at the correct position in the ontology [16]. It can be considered a sub-discipline
of ontology learning and its application is often used for completing an ontology with
new information about the same domain [3]. Ontology population is the task of adding
new instances or individuals to the ontology, which can be later unpopulated, i.e. re-
moved from the ontology. These operations need the use of mediator technologies for
its procedure, such as XSL (EXtensible Stylesheet Language) transformations, XSLT,
that are able to transform XML documents into other formats.

NutElCare (Nutrition for Elder Care) [6] is a recommender system which allows el-
derly people to set up their own healthy diet plans according their needs due to aging
and considering their food preferences, as well as possible allergies or contraindica-
tions and previous ingestions, i.e., what they have eaten in the past. In the system, diets
are represented as XML documents and stored in an XML server repository. These
documents are classified using indexes as instances of concepts in an ontology for
being retrieved only when they are required for reasoning in the recommendation pro-
cesses.

In this paper we introduce the design of the information, knowledge and software
architectures of NutElCare focusing in the XML diets representation, and the enrich-
ment of the ontology to manage the model contained in the XML Schema. We explain
as well, the processes of information retrieval using on-demand binding and popula-
tion which allow the knowledge base to make more efficient reasoning over the con-
tents of the diets. In our approach, these processes are based in XSLT transformations
from the syntactic level of the XML diet model definition to a semantic level supplied
by an OWL diet model definition.

The remaining of this paper is organised as follows. Section 2 introduces some
work related to ontology enrichment and population. In Section 3, we explain the dif-
ferent NutElCare recommendations and the ontologies contained in the system’s
knowledge base, outlining the techniques for diets classification and indexation in the
nutritional ontology. In Section 4, the representation of diets and the processes of on-

200 Vanesa Espín, Manuel Noguera and Maria V. Hurtado

SLATE’2015

tology enrichment and population are explained. Finally, in Section 5, the conclusions
of our work are presented.

2 Related Work

Nowadays, researchers are still working in the automatic ontologies enrichment from
different information sources. Often the ontology enrichment operations need some
previous preparation of the data by hand, and even, some adjustments after the pro-
cess. Thus, most of ontology enrichments are semi-automatic processes where efforts
are focused in the minimization of hand working. One widespread approach is the use
of generic XSL style sheets to perform XSLT transformations from the source infor-
mation representation language to the target ontology language, generally OWL.
When the information to be imported for enriching an ontology is formatted into
XML, the elements of the corresponding XML Schema, contained in an XSD docu-
ment, are typically used to create the linkage between them. This connection is estab-
lished through the definition of mapping rules from the structure and elements of the
XML Schema to the OWL vocabulary. Some methods to generate OWL model docu-
ments from XSD documents have been presented in several works. In [8], authors
propose a method based in a set of predefined mapping rules between XML Schema
and OWL, and supply a Java toolkit that implements the mapping process. A similar
approach is introduced in [2], but with different mapping rules; in this case, the au-
thors provide an online tool, XML2OWL-XSLT, for transforming uploaded XSD
documents. X2OWL tool [9], improves previous works addressing complex cases in
mapping processes that arise from the reuse of global types and elements. However,
this approach is based in the generation of an OWL ontology from scratch and does
not deal with the mapping to an existing ontology, neither with references and imports
to external ontologies in the Schema. A very good survey of the current tools that sup-
port the generation of OWL representations from XML documents with enrichment
purposes is presented in [11]. In our work, the transformations from XML diet docu-
ments to OWL language use the XML Schema documents to keep the syntactic model
of the diets in the system and XML validation purposes. Although the use of generic
available online tools for these transformations, such as [2, 8, 19], seemed promising,
we decided the definition of our own XSLT transformations and mapping rules, since
some problems raised when trying these tools with our XML Schema, such as differ-
ent OWL syntax, version or specie than expected. In other cases, those requirements
were met, but the generated document needed some hand arrangements to be opened
in the ontology editor, or to fit the expected model. Other problems were the handling
of annotations or namespaces from different ontologies importation. Finally, in some
cases the mapping rules had to be redefined.

In contrast to the enrichment process, the population of an ontology can be fully
achieved automatically. However, when the instances to populate the ontology come
from heterogeneous sources, this process may become more complex and require dif-
ferent techniques to mediate, such as instance matching, validating and grouping [4,
16]. In our work, the automatic population of a retrieved XML diet from the repository
is possible once the enrichment process has been performed using the generated in-
dexes classified in the ontology as instances. A simple XSL style sheet binds each

Enrichment and on-demand population of nutritional ontologies from XML diets repository 201

SLATE’2015

instanced element to its correspondent added concept in the ontology. Unlike other
strategies for retrieving information in the population process, in our approach, this
process is only carried out when an instantiation of one diet from the repository is
required and unpopulated when it is no longer needed for the system operation, en-
hancing responsiveness and interactivity in the recommender system.

3 NutElCare

NutElCare is a semantic nutritional recommender system to provide healthy diet
plans to the elderly based on their nutritional needs and preferences. In this section, we
describe the different types of recommendations carried out by the system and the
ontologies that comprise the knowledge base. We also present the classification and
indexation of diets in the nutritional ontology.

3.1 Nutritional Recommendations

Recommendations in NutElCare are based on two different techniques:

─ Knowledge-based techniques, which use knowledge about users and items to gen-
erate a recommendation by reasoning about what items meet the user’s require-
ments. These techniques are used to obtain a healthy diet to fit the nutritional re-
quirements identified from the user profile.

─ Content-based techniques, where the recommendation process consists in learning
from the user’s alimentary behaviour and recommending items that are similar to
their top rated meals or dishes. The content-based recommendation allows the users
to make variations on the selected diet to fit their taste preferences, or availability of
ingredients taking into account their allergenic contraindications and what food has
already been ingested during the week, offering alternatives to the original diet plan
based on these factors. These recommendations are always nutrient guided, provid-
ing alternative suggestions of similar conditions, to continue meeting the initial
healthy requirements of the diet. The system learns from the user selections to im-
prove further recommendations with user inferred preferences.

3.2 Knowledge Base

The knowledge base of NutElCare is represented as an OWL ontology resulting from
the merge operation of three different ontologies: NUSPro, Food Ontology and Nutri-
tional Ontology. The manual edition and visualization of the ontologies is carried out
in Protégé [17] and the management of the ontologies performed by the NutElCare
system is made through the OWL-API Java library [15], and the reasoner used is Pellet
[18]. Next, we briefly describe the aforementioned ontologies and their role in the
knowledge base in order to provide recommendations.

─ The Nutritional User Profile Ontology (NUSPro) has been designed as an extension
of GUMO (General User Model Ontology) [12] for representing users in nutritional
domains.

202 Vanesa Espín, Manuel Noguera and Maria V. Hurtado

SLATE’2015

─ The Food Ontology has been obtained from the Food Products branch of the
Agrovoc FAO Thesaurus [5] of the United Nations. It has been extended with nutri-
tional properties of food, new food classifications and new food instances.

─ The Nutritional Ontology establishes the concepts related to nutritional restrictions
and requirements for user profiles. The central concept of the ontology is the Diet
class whose descendant concepts –or subclasses– are used to classify the different
existing diets in the system. This classification has been formerly agreed by the nu-
tritional experts that supervise this project. When a new diet is being introduced in
the system through the user interface, it must be classified according to the taxono-
my already established in the ontology. This can be achieved through a simple
XSLT transformation, using the Java XML library, from the Diets OWL Class to a
form JSP page, which users fill for the classification of the diet. Once the form is
filled an URL with a new Id of diet is generated and inserted into the ontology as a
subclass of the terms selected by the user. This Id is an index from the ontology to
the document in XML repository. Fig. 1 outlines this process.

Fig. 1. Diets classification and indexation from the XML diets repository through XLST.

Having the diets indexed in the ontology, the system is able to perform a knowledge-
based recommendation of a diet which fits the user profile, but it is not able to person-
alize it with the preferences of the specific user, i.e., it cannot achieve the content-
based recommendation required to allow the selection of alternatives over the food
items contained in the diet. Consequently, the representation of the diets must be like-
wise handled by the nutritional ontology. The next section explains the representation
of diets in the NutElCare system architecture and how this representation provides
support to the content-based recommendation reasoning.

Enrichment and on-demand population of nutritional ontologies from XML diets repository 203

SLATE’2015

4 Diets Model Design and Information Retrieval

In order to perform recommendations over the contents of one diet, those contents
must be represented in the ontology in the form of concepts, relations and individuals.
The representation of a diet comprises the representation of each daily ingestion which
in turn contains from three to five intakes (at least breakfast, lunch and dinner), and
each intake holds several dishes with several meals, food items and preparations.
However, maintaining all this information over time in the ontology, for being used
only a small part of this time, can affect to the system efficiency. Hence, the data rep-
resentation of diets was carried out through XML documents based on a previously
agreed syntactic structure and terminology defined in an XML Schema, which consti-
tutes the syntactic model of the diets located in the XML repository.

4.1 Ontology Enrichment

The first step in order to allow the system reasoning over the contents of one diet is
ontology enrichment for transferring the diet model of the XML Schema into the nutri-
tional ontology. In this way, we build a semantic model of the diet from the syntactic
one. The ontology enrichment process followed in our approach is depicted in Fig. 2.
In it, an XSD document with the syntactic model of the XML diets is obtained. Next,
the mapping rules between XSD and OWL have to be established and applied through
XSLT transformations, generating an OWL model of the diet. Finally, the nutritional
ontology is enriched by adding the generated diet OWL model at the corresponding
target concept.

Fig. 2. Ontology enrichment process from the XML repository of diets.

The mapping between the XML Schema nodes and the OWL concepts is established
through an XSLT transformation using an XSL style sheet following the rules summa-
rized in Table 1. Note that these rules are defined only for our diet model and some of
them differ from the defined in other works.

 XSD Nodes OWL Concepts

204 Vanesa Espín, Manuel Noguera and Maria V. Hurtado

SLATE’2015

xsd:element, with nested elements or at
least one attribute

owl:Class + owl:ObjectProperty

other xsd:element owl:ObjectProperty
named xs:complexType owl:Class
named xs:simpleType owl:DatatypeProperty
xs:minOccurs, xs:maxOccurs owl:minCardinality, owl:maxCardinality
xs:choice owl:unionOf
xs:sequence owl:intersectionOf

Table 1. Mapping Rules between our XSD diet model to OWL diet model.

Fig. 3. Graphical model of a diet from its XML Schema generated with XSDDiagram1.

The annotation of diets to be stored in the repository is made through the NutElCare
user interface using a different XSL style sheet and parsed with the XML Schema
automatically, which minimize the introduction of annotation errors.

A graphical representation of the XSL Schema model of diets is displayed in Fig.3.
It is important to note that in the figure, FoodItem references an individual from the
food ontology and it is linked to the ontology trough the attribute
ref="nutelcare:FoodItem" and its corresponding namespace. This way, the food
items of the diets are linked to the food ontology concepts. An example of the trans-
formation is the result of the application of the mapping rules over the Meal node ob-
taining the following OWL Meal model:

<owl:Class rdf:about="Meal">
<owl:equivalentClass>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:onProperty rdf:resource="hasFoodProduct"/>
 <owl:someValuesFrom rdf:resource="&nutelcare;Foods"/>
 </owl:Restriction>
 <owl:Restriction>

1 http://regis.cosnier.free.fr/?page=XSDDiagram

Enrichment and on-demand population of nutritional ontologies from XML diets repository 205

SLATE’2015

 <owl:onProperty rdf:resource="hasFoodCookedItem"/>
 <owl:someValuesFrom rdf:resource="foodCookedItem"/>
 </owl:Restriction>
 </owl:unionOf>
 </owl:Class>
 </owl:equivalentClass>
</owl:Class>

Once the ontology is enriched with the new OWL diet model concepts and rela-
tions, it is able to support reasoning with the contents of an XML diet. In the next sec-
tion, the ontology population and subsequent reasoning processes are introduced.

4.2 On-demand Population and Reasoning

When the information about a diet in an XML document is required by the recom-
mender system, this information is automatically loaded into the ontology until it is no
longer necessary. This process of population consists in the instantiation of the OWL
diet model with the contents of the selected diet by the knowledge-based recommenda-
tion. This operation is carried out at runtime using Java OWL-API, maintaining the
diet instantiation in memory throughout the recommendation stage and releasing it
from memory when is no longer needed. In the unpopulation process of the ontology,
a copy of the XML diet with the user food variations is stored in the repository for
next retrievals, generating a different historical copy weekly.

Reasoning over the ontology allows the system to offer nutrient-guided variations
over the food that the instantiated diet contains, in order to personalize diets adjusting
to user needs and preferences. This is achieved through semantic similarity metrics
with the individuals of the food ontology and the application of the general and nutri-
tional restrictions taking into account the food already ingested by the user in the same
week. The process of reasoning over the food ontology using semantic similarity in
NutElCare is explained in [7]. For instance, if a user decides changing the meal
“Grilled Salmon”, the system calculate the possible variations and offers a healthy list
of alternatives. This calculation is computed on the basis of the just-mentioned similar-
ity. Let’s assume that the user selects “Grilled Tuna” instead. Then, the system checks
the future ingestions of the diet performing new reasoning to check whether it needs to
adjust the diet plan for the remaining days of the week, to keep meeting the nutritional
requirements.

Reasoning over the ontology with the instantiation of diets allows many other
knowledge inferences, for instance, for monitoring purposes. One example is the cal-
culation of the daily nutritional properties, as the total consumed calories in one day,
checking also whether this value fits the user nutritional daily requirements and send-
ing notifications if it detects lacks or excesses.

5 Conclusions

OWL and XML can work together to further exploit the each other benefits and over-
come their weaknesses. The use of an OWL ontology to represent a big amount of
structured data in which only a small part of this information is demanded at a required

206 Vanesa Espín, Manuel Noguera and Maria V. Hurtado

SLATE’2015

moment can lead to inefficient responsiveness regarding to end users. In order to light-
en the ontology of unnecessary data in the reasoning process, a repository of XML
documents can be used for storing this information and retrieve a document on-
demand, only when it is required.

NutElCare is a semantic nutritional recommender system whose recommendations
are accomplished through several reasoning processes over the ontologies of its
knowledge base. For the purpose of keeping efficiency in the involved reasonings, an
XML diets repository is used for storing the diets information. When a new diet is
incorporated to the system through the system’s user interface, it is automatically an-
notated in an XML document and classified in the ontology for indexing in further
retrievals.

In this work, we have explained the information representation, indexation and re-
trieval of XML diets in our recommender system for being used in nutritional recom-
mendations. We have introduced the concepts of ontology enrichment and population
and the main motivations for its use in this project. We have presented the process by
which our nutritional ontology is enriched with the concepts of the XML Schema diet
model through an XSLT transformation to the OWL diet model. In this process the
XSLT transformation and mapping rules were designed from scratch because none of
the available tools fulfilled our requirements. The ontology is populated on-demand
with the contents of a single diet, being unpopulated when it is no longer needed, stor-
ing the personalized diets as new XML documents in the repository. The configuration
of the NutElCare architecture, connecting this XML diet repository through a seamless
and lightweight linkage to the ontologies of the knowledge base keeps the system
timely responsive.

Acknowledgements. This work was partially funded by the Innovation Office from
the Andalusian Government under project TIN-6600 Virtra-el and by the 'Programa de
Fortalecimiento de I+D+i' de la Universidad de Granada 2014-15.

References

1. Baader, F., Horrocks, I., & Sattler, U. Description logics as ontology languages for the se-
mantic web. In Mechanizing Mathematical Reasoning, pp. 228-248. Springer Berlin Hei-
delberg (2005).

2. Bohring, H., & Auer, S., Mapping XML to OWL Ontologies. In Leipziger Informatik-
Tage, 72, pp.147-156 (2005).

3. Bühmann, L., & Lehmann, J. Universal OWL axiom enrichment for large knowledge bases.
In Knowledge Engineering and Knowledge Management, pp. 57-71. Springer Berlin Hei-
delberg (2012).

4. Buitelaar, P., & Cimiano, P. (Eds.). Ontology learning and population: bridging the gap be-
tween text and knowledge (Vol. 167). Ios Press (2008).

5. Caracciolo, C., Stellato, A., Morshed, A., Johannsen, G., Rajbhandari, S., Jaques, Y., &
Keizer, J. The Agrovoc linked dataset. Semantic Web, 4(3), pp.341-348 (2013).

6. Espín, V., Hurtado, M. V., & Noguera, M. Towards Holistic Support of Active Aging
through Cognitive Stimulation, Exercise and Assisted Nutrition. In Ambient Assisted Liv-
ing and Daily Activities, pp. 312-319. Springer International Publishing (2014).

Enrichment and on-demand population of nutritional ontologies from XML diets repository 207

SLATE’2015

7. Espín, V., Hurtado, M. V., Noguera, M., & Benghazi, K. Semantic-Based Recommendation
of Nutrition Diets for the Elderly from Agroalimentary Thesauri. In Flexible Query An-
swering Systems, pp. 471-482. Springer Berlin Heidelberg (2013).

8. Ferdinand, M., Zirpins, C., & Trastour, D. Lifting XML schema to OWL. In Web Engi-
neering, pp. 354-358. Springer Berlin Heidelberg (2004).

9. Fernández, M., Cantador, I., López, V., Vallet, D., Castells, P., & Motta, E. Semantically
enhanced Information Retrieval: an ontology-based approach. In Web Semantics: Science,
Services and Agents on the World Wide Web, 9(4), pp. 434-452 (2011).

10. Ghawi, R., & Cullot, N. Building Ontologies from XML Data Sources. In DEXA Work-
shops, pp. 480-484 (2009).

11. Hacherouf, M., Bahloul, S. N., & Cruz, C. Transforming XML documents to OWL ontolo-
gies: A survey. In Journal of Information Science, 41(2), pp. 242-259 (2015).

12. Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., & von Wilamowitz-
Moellendorff, M. Gumo–the general user model ontology. In User modeling 2005, pp. 428-
432. Springer Berlin Heidelberg (2005).

13. Hitzler, P., Krotzsch, M., & Rudolph, S. Foundations of semantic web technologies. CRC
Press, 2011.

14. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F., & Rudolph, S. OWL 2 web on-
tology language primer. W3C recommendation, 27(1), 123 (2009).

15. Horridge, M., & Bechhofer, S. The OWL API: A Java API for OWL ontologies. In Seman-
tic Web, 2(1), pp. 11-21 (2011).

16. Petasis, G., Karkaletsis, V., Paliouras, G., Krithara, A., & Zavitsanos, E. Ontology popula-
tion and enrichment: State of the art. In Knowledge-driven multimedia information extrac-
tion and ontology evolution, pp. 134-166. Springer-Verlag (2011).

17. Protégé, OWL Ontology Editor, Protégé 4.1. http://protege.stanford.edu .
18. Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. Pellet: A practical owl-dl rea-

soner. Web Semantics: science, services and agents on the World Wide Web, 5(2), pp. 51-
53 (2007).

19. XSD2OWL. http://rhizomik.net/html/redefer/#XSD2OWL.

208 Vanesa Espín, Manuel Noguera and Maria V. Hurtado

SLATE’2015

Browsing the Parse Space

Daniel Rodríguez-Cerezo, José-Luis Sierra

Fac. Informática, Universidad Complutense de Madrid
{drcerezo,jlsierra}@fdi.ucm.es

Abstract. Ambiguous context-free grammars can generate many (even infinite)
parse trees for each input sentence. We will refer to all these parse trees as the
parse space of the sentence. Thus, in many settings (computational linguistics,
education in compiler construction, etc.) the need for browsing this parsing space
(i.e., for examining different trees in a systematic and ordered way) arises. In this
paper we describe a browsing approach that works for arbitrary (even infinitely
ambiguous) grammars. The approach, which is based on the well-known Earley’s
algorithm, sorts the parse space according to structural complexity of the parse
trees, lets users inspect a particular tree, and then to jump to the previous and/or
the next tree. This approach has been implemented in EvDebugger, an educational
system for the learning of the attribute grammar formalism.
Keywords - Parsing, Earley algorithm, Parse Trees, Grammar Debugging Tech-
nique

1 Introduction

Nowadays context-free grammars are keystone artifacts for specifying the syntax of
both natural and artificial languages [10]. Using context-free grammars, language engi-
neers can describe the structural concepts of a language, establishing in this way the
basic skeleton in which to base all the subsequent processing activities. In addition, they
can use standard grammar analysis algorithms to check desired properties of the pro-
posed grammar (e.g., whether the grammar is proper –i.e., whether all the symbols are
accessible from the initial symbol as well as productive) [1]. Unfortunately, due to their
expressive power, many interesting properties become undecidable [4]. One of these
properties is ambiguity, i.e., whether the grammar is able to impose several, more than
one, alternative structures (i.e., parse trees) to a sentence.

Ambiguity is a typical phenomenon to avoid when modeling artificial languages. For
this purpose, ambiguity sources must be clearly detected and fixed. These sources can
be due to some formalization leak (in this case, they can be solved by changing the
grammar), or they can be rooted in the primary conception of the language itself (in this
case, it is the language conception that must be changed). A way of avoiding ambiguity
is to circumscribe the class of allowable grammars to one for which unambiguity can be
ensured (e.g., LL or LR grammars). However, the membership tests for these classes
provide little information on the ambiguity sources (on the contrary, they identify
sources of non-determinism in the associated parsing algorithms, which may or may not
be related to ambiguity). Thus, when analyzing ambiguity language engineers can take
benefit of a more empirical approach, by selecting representative sentences and by ex-

IV Symposium on Languages Applications and Technologies Pages 209–218
18th and 19th June, Madrid, Spain 978-84-606-8762-7

amining the parse spaces of these sentences (i.e., the set of the sentences’ parse trees –
see Fig.1 1). This approach can be particularly valuable for educational purposes by
letting students of compiler construction courses visualize the ambiguity phenomenon
and identify the potential sources of ambiguity2. In addition, the ability of visualizing
and inspecting ambiguity can be also very valuable in natural language settings, where
ambiguity is not a phenomenon to avoid but an intrinsic feature of natural languages [9].

L → L I | I
I → i | λ

(a) (b)
L

I

L

L I

I

i

i

I

L

L I

I

i

i

i

λ

L

L

I

I

L

L I

I

i

i

λ

i

L

L

I

...
i

Fig.1. (a) An ambiguous context-free grammar; (b) parse tree associated with the sentence iii
with respect to the grammar in (a)

In order to support the aforementioned empirical approach, in this paper we describe
a strategy for systematically browsing the parse space of a sentence according to an
arbitrary (even infinitely ambiguous3) context-free grammars. The strategy uses the
well-known Earley’s algorithm [11] to recognize the input sentence, and then it exploits
the Earley’s list produced by the algorithm to lazily enumerate all the possible trees. In
this enumeration, simpler trees are generated first. Generated trees are backed up for
letting users move to previous trees. This strategy has been successfully implemented in
EvDebugger [13], an educational system focused on the attribute grammar formalism,
in order to let students browse the parse space of the input sentence and examine the
attribute evaluation process on each visited tree.

The rest of the paper is organized as follows: Section 2 describes how parse trees can
be constructed form Earley’s parse lists. Section 3 describes the browsing engine. Sec-
tion 4 outlines some related work. Finally, section 5 presents some conclusions and
outlines some lines of future work.

1 This grammar corresponds to a real case concerning a typical misleading among compiler

construction students at UCM: the aim was to model optional sequences of items (e.g., instruc-
tions). A common trend among students was to make the items optional instead the whole se-
quence.

2 For instance, the trees in make apparent how the source of ambiguity is the aforementioned
misleading of making individual items optional instead the sequence itself.

3 For instance, the grammar in Fig.1(a) is infinitely ambiguous, since the parse space in Fig.1(b)
for the sentence iii contains infinitely many trees. Dealing with this kind of grammars
leaves out naif approaches, such as generating a list with all the possible parse trees as a previ-
ous step to browsing.

210 Daniel Rodríguez-Cerezo and José-Luis Sierra

SLATE’2015

2 Constructing Parse Trees from Earley’s Parse Lists

This section presents the concepts of Earley's parsing relevant for our work. The foun-
dations of Earley’s algorithm are revised in subsection 2.1 Subsection 2.2 shows how
parse trees can be retrieved from Earley’s parse lists.

init:	
 <1,1,S’→	
 •S	
 >	

predictor:	
 <i,j,	
 A	
 →	
 α•B	
 β>	
 ;;	
 B	
 →	
 γ	

<i,i,	
 B	
 →	
 •γ>	

scanner:	

<i,j,	
 A	
 →	
 α•a	
 β>	
 ;;	
 w[i]	
 =	
 a	

<i+1,	
 j,	
 A→	
 α	
 a•β>	

completer:	
 <i,	
 j,	
 B	
 →	
 γ•	
 >	
 ;;	
 <	
 j,	
 k,	
 A	
 →	
 α•B	
 β	
 >	

<i,	
 k,	
 A	
 →	
 α	
 B•β>	

Fig.2.Earley’s recognition calculus (by <i,j,A→α•β> we denote an item in the itemset, by A→α a
syntax rule, by S the grammar initial symbol, and by S’ the initial symbol of the augmented

grammar)

2.1 Earley’s Recognizer

Earley’s algorithm can be though as a way of computing, for an input sentence w, a set
of items of the form <i,j, A → α • β >, where i and j are natural numbers, and A→αβ is a
syntax rule4. The intended meaning of these items is: (i) the input fragment w[j .. i-1]
can be derived from α, (ii) it may be followed by another fragment y that can be derived
from β, and thus (iii) w[j .. i-1]y may be derived from A.

The calculus in Fig.2 characterizes the Earley’s item set associated with a sentence w
with respect to a grammar. Earley’s algorithm implements this recognition calculus by
grouping items by their first component, and by disposing these groups in a parse list.
There will be |w|+1 groups, in such as way w is accepted by the algorithm when the
group |w|+1 contains an item of the form <1,|w|+1, S’ → S •> (S’→S, where S is the
grammar’s initial symbol and S’ is a new fresh initial symbol, is a convenience rule
added to facilitate acceptance recognition as well as the collection of parse trees). In
addition, when constructing the parse list, it is possible to add, to each item, information
on the rules in Fig.2 that generated it (in case of ambiguous grammars, an item could be
generated by more than a rule in the recognition calculus). This information will be
subsequently useful for recovering parse trees. As an example, Fig.3 shows the Earley’s
parse list corresponding to the grammar and the sentence in Fig.1.

4 In the Earley’s original work lookahead symbols were also added to items, although later on it

was shown that it does not substantially affect to algorithm performance.

Browsing the Parse Space 211

SLATE’2015

(1)<1,1,L'→•L>i	
 (10)	
 <2,1,I→i•>	
 s(4)	
 	

(2)<1,1,L→•LI>p(1)	
 (11)	
 <2,1,L→I•>	
 c(10,3)	
 	

(3)<1,1,L→•I>	
 p(1)	
 	
 	
 (12)	
 <2,1,L→L•I>	
 c(10,2)	
 c(15,2)	
 	

(4)<1,1,I→•i>	
 p(3)	
 (13)	
 <2,2,I→•i>	
 p(12)	
 	

(5)<1,1,I→•>	
 p(3)	
 (14)	
 <2,2,I→•>	
 p(12)	
 	

(6)<1,1,L→I•>	
 c(5,3)	
 (15)	
 <2,1,L→LI•>	
 c(10,7)	
 c(14,12)	
 	

(7)<1,1,L→L•I>c(6,2)	
 c(8,2)	
 (16)	
 <2,1,L'→L•>	
 c(15,1)	
 	

(8)<1,1,L→LI•>	
 c(6,7)	
 	
 	

(9)<1,1,L'→L•>	
 c(8,1)	
 	
 	

	
 (17)	
 <3,2,I→i•>s(13)	
 (23)	
 <4,3,I→i•>s(20)	

	
 (18)	
 <3,1,L→LI•>	
 c(17,12)	
 c(21,19)	
 (24)	
 <4,1,L→LI•>	
 c(23,19)	
 c(27,25)	

	
 (19)	
 <3,1,L→L•I>c(18,2)	
 (25)	
 <4,1,L→L•I>c(24,2)	

	
 (20)	
 <3,3,I→	
 •i>p(19)	
 (26)	
 <4,4,I→	
 •i>p(25)	

	
 (21)	
 <3,3,I→	
 •>p(19)	
 (27)	
 <4,4,I→	
 •>p(25)	

	
 (22)	
 <3,1,L'→	
 L•>c(18,1)	
 (28)	
 <4,1,L'→	
 L•>c(24,1)	

Fig.3.Earley’s parse list for sentence iii and grammar in Fig.1a. Each item has a unique number
assigned, as well as the set of rules generating it (i stands for the init rule, p for predict rule, c for

completer and s for scanner; the items involved in the application of each rule are indicated as
arguments –e.g, c(23,19) stands for the application of the completer rule on items 23 and 19)

2.2 The Tree Construction Calculus

Earley’s parse list contains enough information for recovering any parse tree for the
input sentence. Indeed, the recovering process can be characterized by a tree construc-
tion calculus like the shown in Fig.4. This calculus models how to associate subtree
sequences with Earley’s items. For this purpose, it comprises judgements of the form
i˫τ, with i an Earley’s item and τ a sequence of parse subtrees. The calculus itself can be
derived in a straightforward way by examining the scanner and completer rules in the
recognition calculus.

The tree construction calculus plays a primary role in our browsing approach. Indeed,
proof trees in this calculus (tree construction proof trees) show how parse trees can be
effectively constructed. Fig.5 shows an example of tree construction proof tree for the
iii sentence and the grammar in Fig.1.

Notice that tree construction proof trees can be built in two steps:

• First rules are applied in a top-down way to determine the judgement antecedents in
the proof tree (i.e., the i part in a judgment i˫τ). We will call to such a skeleton of tree
construction proof tree a tree construction plan. Notice that by adding information
about the application of the completer and scanner rules to the Earley’s items (see
Fig.3), the Earley’s parse lists will encode all the possible tree construction plans in a
compact way.

• Then, judgment consequents (i.e, the τ part) are synthetized in a bottom-up way.

212 Daniel Rodríguez-Cerezo and José-Luis Sierra

SLATE’2015

 end:	
 <i,j,	
 A→•α>˫[]	
 (α≠λ)	

end-­‐λ:	
 <i,j,	
 A→•>˫λ	

scanner*:	

<i,j,A→α•aβ>˫τ	

<i+1,j,A→αa•β>˫τa	

completer*:	
 <i,j,B→γ•>˫τ0;;<j,k,A→α•Bβ>˫τ1	

<i,k,A→αB•β>˫τ1B	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 τ0	

Fig.4. Tree construction calculus

<4,1,L' →L•>˫ [12]

<3,1,L →L•I>˫[9]

<2,1,L →L•I>˫[3]

<3,3,I →•>˫[7]

<1,1,L' →•L>˫[] <4,1,L →LI•>˫ [9 11]

<4,3,I →i•>˫[10]

<3,3,I →•i>˫[] <3,1,L →LI•>˫[6 8] <1,1,L →•LI>˫[]

<3,1,L →L•I>˫[6]

<1,1,L →•LI>˫[] <3,1,L →LI•>˫[3 5]

<3,2,I →i•>˫[4]

<2,2,I →•i>˫[] <2,1,L→LI•>˫[2] <1,1,L →•LI>˫[]

<2,1,I →i•>˫[1] <1,1,L →•I>˫[]

<1,1,I →•i>˫[]

2

3

4

5

8

1

9 11

12

7

6
10

I

L

L I

I

i

i

λ

i

L

L

I

Fig.5. Example of a tree construction proof tree (rule names are omitted by the sake of simplicity;

instead they can be inferred from the number of child nodes. In addition, sequences of subtrees
are represented as sequences of node numbers in the final parse tree –this parse tree appears in-

side the box).

3 The Browsing Engine

The browsing engine lets users explore the parse spaces for arbitrary context-free
grammars and input sentences. For this purpose, the engine organizes the parse spaces
as a lazily-generated double-linked list of parse trees ordered by number of nodes. For
this purpose, and based on the tree construction calculus described in the previous sec-
tion, the engine maintains a set of partial tree construction plans. When it completes one
of these plans, it uses such a plan to synthetize the corresponding parse tree. Next sub-
sections describe the details of this engine. The architecture and the browsing strategy is
described in subsection 3.1. Subsection 3.2 describes how the engine completes the next
tree construction plan. Finally, subsection 3.3 described how it synthetizes parse trees
from tree construction plans.

Browsing the Parse Space 213

SLATE’2015

3.1 Browser Architecture and Browsing Strategy

The browsing engine maintains two different buffers (see Fig.6):

• A Tree Buffer. This buffer keeps a double-linked list with the parse trees already
generated by the browsing process.

• A Tree Construction Plan (TCP) Buffer. This buffer indexes the partially-generated
tree construction plans. This is initialized with the index elements corresponding to
the item <1,|w|+1,S’→S•>.

In addition, the engine maintains a cursor pointing to the currently visited tree. When
this cursor goes beyond the end of the tree buffer, the engine operates on the TCP Buff-
er in order to complete the tree construction plan for the next parse tree. In order to
ensure, on one hand, completeness of the generation strategy, and, on another hand, a
parse tree as simplest as possible, this plan will add as few nodes as possible to the re-
sulting parse tree. Thus, once the tree construction plan is available, the engine synthe-
tizes the associated parse tree.

Tree buffer
Syntax tree

TCP buffer

Partial TCP

Fig.6. Architecture of the browsing engine.

3.2 Getting the Next Tree Construction Plan

The generation of the next tree construction plan is performed using a breath-first gen-
eration strategy. For this purpose, the TCP buffer contains index elements of the form
<n, Os, Ls>, where:
• n is the number of nodes added by the partial tree construction plan to the final parse

tree.
• Os is the set of yet unexpanded Earley items in this plan.
• Ls is the set of nodes generated by the end or by the end-λ rule.

These elements are ordered by the number of nodes in increasing order. Thus, in or-
der to get the next tree construction plan:

nextTCP:

 foreach R in Rs do
 if

214 Daniel Rodríguez-Cerezo and José-Luis Sierra

SLATE’2015

 found:=false;
 do
 <n,Os,Ls> := pop(TCP);
 if
 ¬ found →
 if
 Os=∅ → found:=true; []
 Os≠∅ →
 θRs := pop(Os);
 if
 Rs = ⊥→
 if
 θ=<_,_,A→•α> →
 newNode = new Init(parent:θRs);
 insert(TCP,<n+1,Os, Ls++newNode>); []
 θ=<_,_, A→•> →
 newNode = new Init-λ(parent:θRs);
 insert(TCP,<n+1,Os, Ls++newNode>);
 end if []
 Rs ≠ ⊥ →

 R= scanner(σ) →
 newRuleNode := new Scanner*(parent:θRs);
 newItemNode := new Item(item:σ,
 parent:newRuleNode);
 insert(TCP, <n+1,
 Os++newItemNode, Ls>); []
 R= completer(σ,ω) →
 newRuleNode :=
 new Completer*(parent:θRs);
 newItemNode 1 := new Item(item:σ,
 parent:newRuleNode);
 newItemNode2 := new Item(item:ω,
 parent:newRuleNode);
 insert(TCP, <n+1,Os++[newItemNode1,
 newItemNode2], Ls>);
 end if
 end foreach
 end if
 end if []
 found → return <n,Os,Ls>
 end if
end do

Fig.7. Pseudo-code for getting the next complete parse tree construction plan.

• The engine extracts the first element <n, Os, Ls> of the TCP buffer.
• If Os is empty, it stops (the extracted element indexes the desired tree construction

plan).
• Otherwise, it extract one item from Os, applies all the possible tree construction rules

on it (this step is speeded-up by the information on the generating rules stored with
the Earley’s items), construct new indexing elements with the result, and inserts these
elements in the TCP buffer (these elements are inserted in the appropriate positions
to maintain the elements in this buffer ordered by the number of nodes).

This behavior is detailed by the pseudo-code of Fig.7. Notice that partial tree con-
struction plans are represented with the arcs reversed (i.e., from children to parents).

3.3 Synthetizing the Parse Tree

As indicated in section 3.1, once the tree construction plan is available, it is possible to
synthetize the corresponding parse tree. Since the browsing engine represents plans with
reversed arcs, it can be meaningfully addressed as a data-driven attribute evaluation
process (see, for instance, [12]). For this purpose:

• Each completer* rule node has a pointer to its first visited antecedent.
• To compute the subtree sequence of the parent on one of these nodes (the rule conse-

quent), this pointer must be set when the node is visited.

Tree synthesis for <n,∅,Ls>:

 PendingNodes = [];
 foreach R in Ls
 if
 R = init(θ) →
 θ.τ := [];
 PendingNodes := PendingNodes++[θ]; []

 Node.parent = completer*(θ) →
 if
 Node.parent.theOtherArg=⊥→
 Node.parent.theOtherArg :=Node; []
 Node.parent.theOtherArg≠⊥→
 if
 Node.parent.theOtherArg = <_,_,B→γ•>→
 let Node = <_,_,A→α•Bβ> in

Browsing the Parse Space 215

SLATE’2015

 Rule = init-λ(θ) →
 θ.τ := [λ];
 PendingNodes := PendingNodes++[θ];
 end if
 end foreach;
 Node := pop(PendingNodes);
 do
 Node.parent = ⊥→return Node.τ ; []
 Node.parent ≠ ⊥→
 if
 Node.parent = scanner*(θ) →
 let Node = <_,_,A→αa•β> in
 θ.τ := Node.τ ++ a
 end let ;
 PendingNodes := PendingNodes++[θ]; []

 θ.τ := Node.τ ++ B

 Node.parent.theOtherArg.τ ;
 end let []
 Node.parent.theOtherArg=<_,_,A→α•Bβ> →
 let Node = <_,_,B→γ•> in
 θ.τ := Node.τ ++ B

 Node.parent.theOtherArg.τ ;
 end let
 end if
 Node.parent.theOtherArg := ⊥;
 PendingNodes := PendingNodes++[θ];
 end if
 end if
 Node := pop(PendingNodes);
 end do

Fig.8. Pseudo-code for the synthesis of parse trees from tree construction plans.

The process itself is initiated by the Ls elements in the plan index <n,∅,Ls> (the
leaves of the plan) returned by the procedure described in the previous subsection, and it
ends when the plan’s root is reached. Since plans can share structure, it also takes care
of restarting the completer* rule first visited antecedent pointers when those nodes are
fired. The strategy itself formalized by the pseudo-code of Fig.8.

4 Related Work
The typical way of dealing with parse spaces is by constructing parse forests (i.e., com-
pact representations of all the possible parse trees of a sentence) [7]. The original work
of Earley [11] suggested a way of building parse forests from the references associated
to the items in the parse lists. However, Tomita in [17] notices that Earley’s method
could be incorrect. The Tomita’s parse method as well as their successors in the GLR
parse branch incorporate parse forest construction as an essential feature, although, in
general, GLR methods fail to deal with arbitrary context-free grammars. The works in
[14][15] shows how to adapt the Earley’s parsing style to produce parse forests of the
input sentences in a correct way. On the contrary to these approaches, ours does not
attempt to build compact representations of parse spaces, but to browse these spaces.
The browsing strategy presented in this paper could be adapted to work on parse forests
instead of on parse lists, however, without substantial modifications. Nevertheless, it
could introduce an unnecessary intermediate step, so we find our solution, based on the
tree construction calculus, more natural and straightforward.

One of the potential applications of our approach is as a tool for helping language
engineers to understand grammar ambiguity. Regardless its undecidable nature, ambigu-
ity analysis is amenable of being addressed by approximation strategies. In [6] parse
forests are analyzed for detecting typical causes of ambiguity. In [18] a non-exhaustive
breath-first search strategy on the sentences generated by the grammar is used. The
work in [8] uses regular approximations of the grammars under study to turn the prob-
lem of ambiguity detection in a decidable one. In [5] a usability analysis of the tech-
niques involved in ambiguity detection is carried out. While all these techniques are
oriented to automatize ambiguity detection and/or diagnose, our approach is more ag-
nostic and user-centered, providing users with a tool that can be used for browsing the

216 Daniel Rodríguez-Cerezo and José-Luis Sierra

SLATE’2015

parse space, and which can be useful to diagnose the possible causes of ambiguity of a
given grammar construction.

Finally, our approach can be useful in educational settings, in order to help students
to better appreciate and understand the ambiguity phenomenon. For this purpose, it
differs from other visualization-based comprehension approaches to parsing (e.g.,
[2][3]), since these approaches are usually focused to visualize / animate the construc-
tion of single parse trees, instead of being focused on whole parse spaces. A preliminary
version of our approach was implemented in PAG (Prototyping with Attribute Gram-
mars) [16]. However, this preliminary implementation failed to work with infinitely
ambiguous grammars. As aforementioned, the approach in its current form has been
recently implemented in the EvDebugger system [13].

5 Conclusions and Future Work
In this paper, we have presented a strategy that allows the navigation of the parse space
imposed by a grammar on a sentence. The strategy is built on the well-known Earley’s
algorithm and works for arbitrary (even infinitely ambiguous) context-free grammars.
The approach sort parse tree by structural complexity (first the simpler ones), and it is
based on a breath-first construction of the proof trees for a parse tree construction calcu-
lus derived from the Earley’s parsing calculus. This strategy has been implemented in
EvDebugger, an educational IDE for language processor generation based on attribute
grammars enriched with a visual debugger, in order to provide the capabilities needed to
deal with the ambiguity of underlying context-free grammars.

Currently we are planning to carry out an empirical evaluation of the approach with
students of a compiler construction course, in order to assess its usability as well as its
efficacy as a tool for comprehending the ambiguity phenomenon and for diagnosing
causes of ambiguity. We are also planning to carry out an in-depth analysis of efficiency
criteria concerning the browsing approach and also to explore alternative construction
strategies (e.g., using iterative deepening in connection with the tree construction calcu-
lus).

Acknowledgements
This work has been partially supported by the BBVA Foundation (research grant
HUM14_251) , by Santander-UCM GR3/14 (group number 962022) and by the grant
EDU/3445/201.

References
1. Aho, A. V., & Ullman, J. D. The theory of parsing, translation, and compiling, Vol I: Parsing

. Prentice-Hall, Inc. (1972).
2. Almeida-Martınez, F. J., Urquiza-Fuentes, J., & Velázquez-Iturbide, J. Visualization of syn-

tax trees for language processing courses. Journal of Universal Computer Science, 15(7),
1546-1561. (2009).

3. Almeida-Martínez, F. J., Urquiza-Fuentes, J., & Velázquez-Iturbide, J. Á. VAST: Visualiza-
tion of abstract syntax trees within language processors courses. In Proceedings of the 4th
ACM symposium on Software visualization, pp. 209-210. ACM. (2008).

4. Bar-Hillel, Y., Perles, M., & Shamir, E. On formal properties of simple phrase structure
grammars. STUF-Language Typology and Universals, 14(1-4), 143-172. (1961).

Browsing the Parse Space 217

SLATE’2015

5. Basten, H. J. The usability of ambiguity detection methods for context-free grammars. Elec-
tronic Notes in Theoretical Computer Science, 238(5), 35-46. (2009).

6. Basten, H. J., & Vinju, J. J. Parse forest diagnostics with Dr. Ambiguity. In Software Lan-
guage Engineering, pp. 283-302. Springer Berlin Heidelberg. (2012).

7. Billot, S., & Lang, B. The structure of shared forests in ambiguous parsing. In Proceedings of
the 27th annual meeting on Association for Computational Linguistics, pp. 143-151. Asso-
ciation for Computational Linguistics. (1989).

8. Brabrand, C., Giegerich, R., & Møller, A. Analyzing ambiguity of context-free grammars.
Science of Computer Programming, 75(3), 176-191. (2010).

9. Clark, A., Fox, C., & Lappin, S. (Eds.). The handbook of computational linguistics and natu-
ral language processing. John Wiley & Sons. (2013).

10. Dick, G., & Ceriel, H. Parsing Techniques, a Practical Guide, 2nd Edition. Monographs in
Computer Science. Springer (2007).

11. Earley, J. An efficient context-free parsing algorithm. Communications of the ACM, 13(2),
94-102. (1970).

12. Kennedy, K., & Ramanathan, J. A Deterministic Attribute Grammar Evaluator Based on Dy-
namic Sequencing. ACM Transaction of Programming Languages and Systems, Vol. 1, No.
1, 142-160. (1979)

13. Rodriguez-Cerezo, D., Henriques, P. R., & Sierra, J. L. Attribute grammars made easier:
EvDebugger a visual debugger for attribute grammars. In Computers in Education (SIIE),
2014 International Symposium on, pp. 23-28. IEEE. (2014).

14. Scott, E. SPPF-style parsing from Earley recognisers. Electronic Notes in Theoretical Com-
puter Science, 203(2), 53-67. (2008).

15. Scott, E., & Johnstone, A. Recognition is not parsing—SPPF-style parsing from cubic recog-
nisers. Science of Computer Programming, 75(1), 55-70. (2010).

16. Sierra, J. L., Fernández-Pampillon, A. M., & Fernández-Valmayor, A. An environment for
supporting active learning in courses on language processing. ACM SIGCSE Bulletin, 40(3),
128-132. (2008).

17. Tomita, M. Efficient Parsing for Natural Language. Kluwer Academic, Boston. (1986).
18. Vasudevan, N., & Tratt, L. Detecting ambiguity in programming language grammars. In

Software Language Engineering (pp. 157-176). Springer International Publishing. (2013).

218 Daniel Rodríguez-Cerezo and José-Luis Sierra

SLATE’2015

Assessing Attribute Grammars’ Quality:
metrics and a tool

João Cruz1, Pedro Rangel Henriques1 and Daniela da Cruz2

1 Dpt.Informatica/Centro Algoritmi, Universidade do Minho, Braga, Portugal
2 Centro Algoritmi, IPCA, Barcelos, Portugal

Abstract. The definition of metrics and their evaluation process is an
activity intrinsic to each engineering branch and it has to do with the
need to reason quantitatively about the quality of the developed prod-
ucts. Years ago software engineers working on the field of formal lan-
guages and grammars came out with the idea of measuring grammars.
However no much progress was done in this trend; there is a clear lack
for tools to automatize the computation of some grammar metrics gram-
mars. In this paper we will introduce a tool, GQE, aimed at evaluating a
new set of simple metrics for attribute grammars (AG) in order to help
on the assessment of AGs quality.

1 Introduction

Grammar Engineering [7, 1, 8, 4] is a field in software engineering that involves
the application of well studied software techniques and methods to grammars,
just as they are applied on another software products. Such techniques include
version control, static analysis, unit testing, software metrics and evolution,
refactoring, among others. Through their implementation, in today’s process
of developing and maintaining large grammars, better results can be achieved in
terms of quality, increasing their efficiency and usability. The objective of this
paper is to introduce a software tool, GQE–Grammar Quality Evaluator, that helps
on the assessment of grammar quality by performing the automatic evaluation of
a large set of metrics. Based on the metrics computed, any Grammar Engineer
will easily be able to reason about the quality of its grammar and to improve
it. Although there exist some tools similar to the one here described, such as
SynQ by Power and Malloy [9] and gMetrics tools [3], the proposed GQE system
is different because it is extended to deal with AGs (not only GFGs). Despite
using similar procedures, it will produce different results because new metrics
will be considered for the assessment (notice that besides the traditional size
metrics, we contribute with a new set of style and lexicographical metrics).
In this paper, before introducing the tool, Section 4, we discuss our proposal
for factors that define the quality of an AG and characteristics that impact on
them, Section 2, and introduce the metrics that we intended to evaluate aimed
at quantifying the quality, Section 3.

IV Symposium on Languages Applications and Technologies Pages 219–224
18th and 19th June, Madrid, Spain 978-84-606-8762-7

2 Grammar Quality

As a grammar is a two fold formalism used to define (generate) a language,
and guide the recognition of that language, Henriques proposed in [5] a set of
factors that shall be considered to assess the grammar quality: (while language
generator) Usability of the grammar as a tool for sentences derivation: ease of
understanding(learning); ease of derivation(writing); ease of maintenance.
(while program generator) Efficiency of the grammar as a tool for language
processors derivation, considering both the efficient parsing of the language
sentences (obviously the main concern), and the efficient generation of the
language processors.

Usability in general measures the level of satisfiability of the user following
the grammar to use/understand the language. The understanding easiness is
related to: the identifiers chosen for the non-terminal and terminal symbols and
for the attributes; the use of unit productions; the length of the productions
right side (RHS); the notation employed to write the grammar rules (pure or
extended BNF); the type of recursion used in the derivation rules (right or left,
direct or indirect recursion). Concerning the derivation, its easiness depends
on: the number of non-terminals and keywords; the number of productions; the
use of a consistent notation for the productions as well as a regular recursive
schema; the use of clear identifiers. Regarding maintenance, besides all the fac-
tors exposed above, two more elements are important: modularity (a monolithic
version is different of one based on the imported components); complexity, as it
reflects the way symbols depend on each other.
The Efficiency in Recognition is measured in terms of: Parsing time; size and
complexity of the Parsing Tables. The Efficiency in automatic Generation
of the processor is measured in terms of: the generation time; the size of the
intermediate data structures used for storing and transforming the grammar.
The Efficiency of the generated processor (the parser), or of the generation
process, is affected by factors external to the grammar (like the methods, tech-
niques and algorithms used), but it also depends on the size of the grammar and
on its writing style.
After proposing the factors that determine the quality of a grammar, it is cru-
cial to identify the grammar characteristics that have impact on those factors.
For the sake of space we just sum up our research listing the grammar charac-
teristics (able to be measured), which we strongly believe that have a directly
influence on the grammar quality: the Identifiers of Symbols or Attributes; the
number of Symbols or Attributes, of Productions3 and Unit Productions; the
length of the RHS4; the Notation and the Recursion schema used to write the
Productions; the Attribute Types and simplicity of the Semantic Operators; the
number of Semantic Rules (attribute evaluation rules, contextual conditions, and
translation rules); the Attributive schema (purely synthesized, or mixed (inher-

3 Or Derivation Rules.
4 Right-Hand Side.

220 João Cruz, Pedro Rangel Henriques and Daniela Da Cruz

SLATE’2015

ited and synthesized)); the Syntatic/Semantic Complexity (Symbol/Attribute
Dependencies); the Modularity.

3 Grammar Metrics

Once identified a list of characteristics5 that should be taken into account to ap-
praise the quality of a grammar, and considering the proposals by other authors
cited in the Introduction, we defined a set of parameters (metrics) that can be
measured in a objective and systematic way. Below we just list (without rigorous
definitions6) the metrics so far identified that are evaluated by GQE, separating
those that are extracted from the CFG (concerned with the syntax) from those
that are related to the semantics, extracted from the AG.

3.1 CFG Metrics

Assuming G is a well-formed7 Context-Free Grammar, and SDG is the respec-
tive Symbol Dependency Graph, we define below the metrics to assess the quality
of G, dividing them into 3 groups:

– Size Metrics:
• (SM1) Grammar size
• (SM2) Grammar syntax complexity
• (SM3) Parser size

– Style Metrics
• (FM1) form of Recursion
• (FM2) type of Recursion
• (FM3) notation

– Lexicographical Metrics
• (LM1) clear identifiers for terminal and non-terminal symbols
• (LM2) clear reserved-words and signs from the language defined by

G
• (LM3) flexibility of terminal-classes
• (LM4) comment types

Notice that the evaluation of the above described lexicographic metrics (as
well as those that will be introduced in the next subsection for attribute identi-
fiers) rely upon the notion of Identifier Derivation from a Concept name.
We say that an identifier8 derives from a multi-term concept name (for instance,
the identifier DestAddrLst derives from the concept name Destination Address
List) if, after applying to it the traditional techniques for identifiers split and
expansion (for complete definition and details on that topic, please see [2]) one
can get a correct concept name in the domain of application of the grammar
under analysis.

5 That, at the best of our knowledge, is novel.
6 Please refer to [6] to find details.
7 For each N exists at least one derivation rule with that symbol on the LHS, and

there are not unreachable N .
8 for a Terminal, a Non-Terminal, an Attribute or an Attributive Operation.

Assessing Attribute Grammars’ Quality: metrics and a tool 221

SLATE’2015

3.2 AG Metrics

Assuming AG is a well-formed Attribute Grammar and keeping all metrics in-
troduced before for the assessment of the underlying Context-Free Grammar, we
present below the 3 groups of metrics to appraise the quality of an AG:

– Size Metrics:
• (ASM1) Attribute Grammar size
• (ASM2) Grammar semantic complexity

– Style Metrics
• (AFM1) attributes complexity
• (AFM2) complexity of the attributive operations
• (AFM3) evaluation scheme for writing CRs
• (AFM4) semantic restriction scheme for writing CCs
• (AFM5) translation scheme for writing TRs
• (AFM6) style of the language to write the attributive operations
• (AFM7) language specificity to write the attributive operations

– Lexicographical Metrics
• (ALM1) clear identifiers for attributes
• (ALM2) clear identifiers for attributive operators

4 A Tool for Metric Evaluation

GQE - Grammar Quality Evaluator is an attribute grammar compiler (processor)
written in Java, and generated by AnTLR from the meta-grammar originally
designed by Sam Harwell and Terence Parr, and afterwards extended by us with
the necessary attributes and semantic rules to perform the computations of the
size, style and lexicographic metrics we need. So the tool will accept as input
CF grammars and Attribute grammars, in the ANTLR version 4.5 format and,
as output, will return a list of evaluated grammar metrics. In the future we aim
at produce a more elaborated output, providing a grammar quality report, as
discussed below. Figure 1) illustrates the output of our tool for a Lisp language
AG. On account of space strong constraints it is impossible to show other test
cases we have worked; other details on GQE, input and output formats, results,
etc, can be seen at http://www.di.uminho.pt/ gepl/GQE.

Concerning metrics evaluation, we can say that: most of the Size metrics
are evaluated by direct measuring, with the exception of syntax and seman-
tic complexity that are calculated by building both the Local Dependency and
the Symbols Dependency Graphs; the computation of Style metrics require a
higher degree of complexity because it is necessary to work on the internal data
structures used to represent the production set in order to detected definition
patterns; regarding the Lexicographic metrics some external Natural Language
Processing tools, such as IdSplitter and WordNet (among others) were used to
analyze the clarity of identifiers.

Some of the metrics can, at first insight, appear to be useless for grammars
written in AnTLR format, but in the future, when GQE is adapted to accept
other kind of grammar formats, such metrics will give useful information regard-
ing the grammar quality.

222 João Cruz, Pedro Rangel Henriques and Daniela Da Cruz

SLATE’2015

|------------------| |------------------|

| Size Metrics | | Size Metrics |

|#T |4 | |#A |17 |

|#N |3 | |#AI |8 |

|#P |6 | |#AS |9 |

|#PU |0 | |#CR |23 |

|#R |2 | |#CC |? |

|&RHS |1,3 | |#TR |? |

|&RHS-Max|3 | |------------------|

|&Alt |2,0 | |FanIn |0,8 |

|&Alt-Max|3 | |FanOut |1,2 |

|#Mod |0 | |------------------|

|------------------| | Form Metrics |

|FanIn |2,7 | |------------------|

|FanOut |1,1 | |#AComplx|5 /17 |

|------------------| |#OComplx| |

|#RD |7 | |CRScheme|? |

|&TabLL |15 | |CCScheme|? |

|&AD-LR |10 | |TRScheme|? |

|&TabsLR |50 ;30 | |Lg.Style|imperativ|

|------------------| |Lg.Speci|standard |

| Form Metrics | |------------------|

|Rec.Form|FMixedRec| | Lex. Metrics |

|--------| | |#IdAComp|17/17 |

|Rec.Type|RecR | |#IdOComp|? |

|--------| | |------------------|

|Notation|Pure-BNF |

|------------------|

| Lex. Metrics |

|Clear Id|5/5 |

|Kw/Signs|? |

|TV Flexi|? |

|ComType |0 |

Fig. 1. Metrics results, obtained by GQE, for a CFGrammar and Attribute Grammar
that describe the Lisp language.

5 Conclusion

We have introduced GQE, a tool to support the user in assessing Attribute
Grammars. The motivation to start this research project was given in the In-
troduction; it mainly arose from the need to assess the quality of software prod-
ucts and specifications using quantitative measurements. GQE computes a set
of fine grain metrics, built upon the traditional metrics for CFGs and extended
with new metrics that consider the writing style (syntactic recursive schemas,
attribute evaluation schemas, notation, etc.) and also the understandability in-
herent to the identifers. The tool (developed in Java with the help of AnTLR)

Assessing Attribute Grammars’ Quality: metrics and a tool 223

SLATE’2015

reads any AnTLR Grammar (this is, any AG written in the AnTLR metalan-
guage) and outputs the value for each one of the metrics under consideration.
The user (for sure a Grammar Engineer) will analyze the values provided and
will be able to come up with an assessment. Easily he will be able to transform
his original grammar and submit the new one for re-evaluation to understand
the eventual improvements. We strongly believe that this approach will help
the user in designing equivalent grammar versions (i.e., different grammars that
generate precisely the same language) with different quality levels according to
different perspectives (enhancing the grammar’s usability or its efficiency). In-
stead of producing a final figure quantifying (or grading) the grammar’s quality,
we intend to create a database (a kind of CBR system) to collect grammars, met-
ric values computed, and the expert’s grading, in order to use machine learning
algorithms to infer the grading in future cases. This will enable us to provide
a more elaborated report on the grammar quality and suggest a set of possible
transformations to improve the grammar (according to different perspectives).
As future work we also plan to related the grammar with the generated lan-
guage in order to understand until which point is it possible to discuss also the
language quality.

References

1. Alves, T.L., Visser, J.: A case study in grammar engineering. In: Software Language
Engineering, First International Conference, SLE 2008, Toulouse, France, September
29-30, 2008. Revised Selected Papers. pp. 285–304 (2008)

2. Carvalho, N.R., Almeida, J.J., Henriques, P.R., Pereira, M.J.V.: From source code
identifiers to natural language terms. Journal of Systems and Software 100, 117–128
(2015), http://dx.doi.org/10.1016/j.jss.2014.10.013

3. Crepinsek, M., Kosar, T., Mernik, M., Cervelle, J., Forax, R., Roussel, G.: On
automata and language based grammar metrics. Comput. Sci. Inf. Syst. 7(2), 309–
329 (2010), http://dx.doi.org/10.2298/CSIS1002309C

4. Erbach, G.: Tools for grammar engineering. In: Proceedings of the Third Conference
on Applied Natural Language Processing. pp. 243–244. ANLC ’92, Association for
Computational Linguistics, Stroudsburg, PA, USA (1992)

5. Henriques, P.R.: Brincando às Linguagens com Rigor: Engenharia Gramatical. Tech.
rep., Dep. de Informática, E.Engenharia da Universidade do Minho (Oct 2011),
habilitation monography presented and discussed in a public session held in April
2012.

6. João Cruz: An Attribute Grammar based System to assess Grammars Quality
(PreThesis) (2015)

7. Klint, P., Lämmel, R., Verhoef, C.: Toward an engineering discipline for
grammarware. ACM Trans. Softw. Eng. Methodol. 14(3), 331–380 (Jul 2005),
http://doi.acm.org/10.1145/1072997.1073000

8. Lämmel, R.: Grammar testing. In: Fundamental Approaches to Software Engineer-
ing, 4th Int. Conference, FASE 2001 Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2001 Genova, Italy, April 2-6, 2001,
Proceedings. pp. 201–216 (2001), http://dx.doi.org/10.1007/3-540-45314-8 15

9. Power, J.F., Malloy, B.A.: A metrics suite for grammar-based software. Journal of
Software Maintenance 16(6), 405–426 (2004), http://dx.doi.org/10.1002/smr.293

224 João Cruz, Pedro Rangel Henriques and Daniela Da Cruz

SLATE’2015

A Syntax-Directed Model Transformation Framework
based on Attribute Grammars

Antonio Sarasa-Cabezuelo, José-Luis Sierra

Facultad de Informática. Universidad Complutense de Madrid.
{asarasa, jlsierra}@fdi.ucm.es

Abstract. Model transformation is a key aspect of model-driven software devel-
opment because it enables the automatic derivation of different interpretations of
a system model. In many scenarios (e.g., design of domain-specific languages),
models usually have implicit an identifiable primary tree-like syntactic structures,
on which additional secondary relationships are imposed to yield the final model
graphs. Therefore, in these scenarios it seems natural to address the processing of
these models on the basis of their underlying syntactic structure. For this purpose,
we have developed AGT, an experimental transformation framework based on at-
tribute grammars, which takes full advantage of the underlying syntactic structure
of source models. For models in which this structure is clearly identifiable, the
approach could result more natural and easier to use and maintain than other
more conventional model transformation approaches (e.g., those based on more
standard model transformation languages).

Keywords: Attribute grammar, model-driven development, model transfor-
mation

1 Introduction

A key aspect of model-driven software development is model transformation, i.e. the
translation of models conforming a particular meta-model (source meta-model) into
models conforming another meta-model (target meta-model).

This paper focuses on formal grammars for model transformation, specifically at-
tribute grammars [3]. For this purpose it describes a Java framework for model trans-
formations called AGT (Attribute Grammar Transformer), which enables specifica-
tions based on attribute grammars to describe model to model transformations in a
declarative style. Contrarily to the main trend in the grammar-based approach, the use
of graph grammars [2], attribute grammars enable syntax-directed transformation pro-
cesses organized around the tree-like primary structure of the model, while graph
grammars adopt a template-based approach, in which subgraphs are matched and trans-
formations applied on the matched subgraphs. Therefore, attribute grammars can be
more appropriate for models with a well-distinguished hierarchical structure (e.g.,
models arising in the modelling of domain-specific languages). In addition, contrarily
to other works of using attribute grammars for model transformation, like [1], the pro-

IV Symposium on Languages Applications and Technologies Pages 225–230
18th and 19th June, Madrid, Spain 978-84-606-8762-7

posal described in this paper is not based on canonical textual encodings of the models,
but it adapts the attribute grammar formalism to work directly on object networks (and,
therefore, on the in-memory representation of models). By doing it so, the hierarchical
primary structure of models is fully exploited to guiding the transformation process in a
syntax-directed fashion.

The rest of the paper is structured as follows. Section 2 gives an overview of AGT.
Section 3 describes AGTL, the transformation specification language included in AGT.
Finally, section 4 outlines some conclusions and lines of future work.

2 The AGT framework

AGT (Attribute Grammar Transformer) is a model transformation framework based on
attribute grammars implemented and tightly integrated with the Java language. Indeed,
the framework is oriented to transform (or, more generally, to process) models encoded
as Java object networks (in this way, meta-models are mirrored on sets of Java classes).
This framework specializes Java by providing the following main components: (i)
AGLT (Attribute Grammar Transformation Language), a declarative specification
language for attribute grammar-based model transformations, (ii) AGT transformer, a
transformation engine that implements the operational semantics of AGTL, and (iii)
AGLT runtime, a set of Java utility classes that can be used during transformation.

Transformations according to AGT actually integrate two well-differentiated parts:
(i) on one hand, a syntax-directed specification provided as an AGTL attribute gram-
mar, and (ii) on another hand, additional Java code implementing the specific machin-
ery required to carry out the implementation.

The connection between the two parts is given by a semantic class, which imple-
ments the semantic functions used in the AGLT specification in terms of the additional
Java machinery provided. This organization is analogous to that followed in other syn-
tax-directed approaches to information processing developed in our group (e.g., XLOP
for XML processing [5] or JLOP [4] for JSON processing).

3 AGTL: The AGT Specification Language

The core component of AGT is AGTL (Attribute Grammar Transformation Language),
a specification language for attribute grammar-based model transformations. This sec-
tion summarize the AGTL syntax (subsection 3.1) and the AGTL operational semantics
(subsection 3.2), and it gives a small example of using AGTL (subsection 3.3).

3.1 AGLT syntax

A specification in AGTL is composed by (see Fig 1): (i) a declaration of non-terminal
symbols and their associated attributes, and (ii) a specification of the attribute grammar
rules. Each rule includes a context-free part connecting non-terminals with classes of
the source model, and semantic equations specifying how to compute the required at-
tributes in the rule context.

226 Antonio Sarasa-Cabezuelo and José-Luis Sierra

SLATE’2015

<Grammar> ::= <NTDec>+ <Rule>+
<NTDec> ::= nt(nonTerminalName,[<AttList>],[<AttList>]).
<AttList> ::= (attName (, attName)*)?
<Rule> ::= nonTerminalName '::='
 (className {<FieldSpecList>}
 {<EquationList>}
 ({<EquationList>})? |

 null {<EquationList>} |
 className: nonTerminalName {<EquationList>}) .

<FieldSpecList> ::= (<FieldSpec> (, <FieldSpec>)*)?
<FieldSpec> ::= fieldName : nonTerminalName
<EquationList> ::= (<Equation> (, <Equation>)*)?
<Equation> ::= <AttrRef> = <SemExp>
<AttrRef> ::= nonTerminalName('(' num ')')?.attname
<SemExp> ::= <AttrRef>|funName '(' <ArgList> ')'|@fieldName
<ArgList> ::= (<SemExp> (,<SempExp>)*)?

Fig 1. Textual syntax of the AGTL language

Each non-terminal has associated a single rule in the AGTL grammar. In other
words, in AGLT there is a one-to-one correspondence among non-terminals and rules
with these non-terminals in their LHSs. In addition, AGTL distinguishes between three
different types of rules:

• Class rules. Rules applicable to objects of a given class. A class rule specifies such a
class of objects to which the rule can be applied, a field specification (see below),
and, in addition to the set of first visit equations, a set of cut equations.

• Null rules. Rules applicable to null values.
• Bridge rules. Rules used to forward the processing of an object to a more specific

rule depending on its class. Thus, these rules are a simple but yet effective way of
dealing with inheritance in the source model. The forwarding is carried out by
providing a non-terminal name.

Concerning field specifications in class rules, each field specification makes it pos-
sible to select the rule to be applied in order to analyze a field of the matched object.
The rule to apply is selected by providing a non-terminal name.

Concerning semantic equations, more representative AGTL rules include two differ-
ent types of equations:

• First-visit equations. These equations are used the first time the rule is applied to an
object.

• Cut equations. These equations are used when the rule is applied to an already-
analyzed object.

This organization of semantic equations in first-visit and cut packages is necessary
to enable the application of AGLT to arbitrary object graphs.

Concerning semantic expressions used in semantic equations, AGTL allows two
types of basic expressions: (i) references to attributes in the rule, and (ii) field value
extraction expression, which make it possible to query the values of fields in objects to
which the rules are applied (the operator @ is used on field names). In this way, it
makes apparent how semantic attributes in AGLT does not correspond to class fields,

A Syntax-Directed Model Transformation Framework based on Attribute Grammars 227

SLATE’2015

but they represents placeholders in which to store transformation results, as it is usual
with attribute grammars.

Finally, compound expressions are formed by applying semantic functions to sim-
pler expressions.

3.2 AGTL Operational Semantics

With respect to operational semantics, AGTL follows a syntax-directed translation
model. More particularly, transformation is organized in two different stages:

• During the first stage, the analysis stage, syntax rules are applied in order to make
the syntactic structure of the source model explicit. This structure is represented as a
parse tree that covers the objects from the source models. The nodes of this tree are
labelled with non-terminals and they are linked with the corresponding objects in the
source model. Its arcs are labelled with field names of those objects.

• During the second stage the semantic equations are used to find the values of the
attributes for the nodes of the parse tree. As usual, the order in which these values
are obtained must be consistent with a topological order of the corresponding de-
pendency graph.

In AGT these operational semantics are implemented by the aforementioned AGT
transformer.

3.3 An Example

In order to illustrate the use of AGTL, we will address the AGLT specification of the
classic example of a simple mapping of class models into relational database schemata.
Fig 2 shows the structure of the source and target meta-models.

(a)

(b)

Fig 2.a) Source metamodel; b) Target metamodel

The transformation will map each class in the class model into a table in the rela-
tional schema. The table name will match the class name. Columns names will match
attribute names in the classes. The types of the columns will depend on the type of
attributes, so the type of the column will be the type of the attribute if it is a primitive

228 Antonio Sarasa-Cabezuelo and José-Luis Sierra

SLATE’2015

type (boolean, integer, char) or "fk "(foreign key) followed by the class name if
the type of the attribute is another class.

nt(<Root>,[],[tables]).
nt(<Class>,[itables],[tables,name]).
nt(<Attributes>,[itables],[tables,cols]).
nt(<Attribute>,[itables],[tables,col]).

<Root> ::= Class: <Class> {
 <Class>.itables = mkEmptySetOfTables(),
 <Root>.tables = mkTables(<Class>.tables)}.

<Class> ::= Class { attributes: <Attributes> }
 {
 <Attributes>.itables =
 addTable(<Class>.itables,
 mkTable(@name,<Attributes>.cols)),
 <Class>.tables = <Attributes>.tables,
 <Class>.name = @name}
 {
 <Class>.tables = <Class>.itables,
 <Class>.name = @name}.

<Attributes> ::= com.agt.core.Array {first: <Attribute>,
 butfirst: <Attributes>} {
 <Attribute>.itables = <Attributes>(0).itables,
 <Attributes>(1).itables = <Attribute>.tables,
 <Attributes>(0).tables = <Attributes>(1).tables,
 <Attributes>(0).cols = addCol(<Attributes>(1).cols,
 <Attribute>.col)}.

<Attributes> ::= null {
 <Attributes>.tables = <Attributes>.itables,
 <Attributes>.cols = mkEmptyListOfCols()}.

<Attribute> ::= PlainAttribute {}{
 <Attribute>.tables = <Attribute>.itables,
 <Attribute>.col = mkCol(@name,@type)}.

<Attribute> ::= StructuredAttribute {type: <Class>}{
 <Class>.itables = <Attribute>.itables,
 <Attribute>.tables = <Class>.tables,
 <Attribute>.col = mkCol(@name, mkForeignKey(<Class>.name))}.

Fig 3.Example of transformation in AGTL

Fig 3 shows the transformation specified in AGTL. In the specification, the inherited
attribute itables is intended to contain the set of tables already constructed, and the
synthetized attribute tables the overall set of tables. The class
com.agt.core.Array is a utility class of the AGT runtime that is useful in order
to deal with collections (the AGT transformer automatically wraps collections using
this utility class). Objects of this class exhibits two fields (first: the first element of
the collection, butfirst: a collection made of the rest of fields). The implementation
of the semantic functions used must be provided to the AGT transformer as a plain Java
class (the semantic class of this transformation) In addition, it is also needed to indicate
to this transformer: (i) a root object in the source model, and (ii) a root non-terminal in
the grammar. Then, the transformation will proceed according the AGTL operational
semantics outlined in the previous subsection.

A Syntax-Directed Model Transformation Framework based on Attribute Grammars 229

SLATE’2015

4 Conclusions and future work

This paper has presented a model transformation framework based on attribute gram-
mars, which is highly integrated in Java. The aim of the framework is similar to the
presented in [1], but differs in that attribute grammars operate on object networks in-
stead of on textual encodings of the source models. It makes it possible to exploit the
primary hierarchical structure of models in a more natural way. Indeed, the approach
can be particularly well-suited for source models with well-distinguished primary tree-
like structures (like those arising, for instance, when modeling domain-specific lan-
guages).

We are currently working on the static typing of AGLT specifications. As future
lines of work we envision the integration of AGT with standard metamodeling pro-
posals (e.g., MOF or Ecore), the creation of an IDE for AGT, the efficiency analysis of
the AGT transformer, and an in-depth empirical evaluation of our proposal. This evalu-
ation will include a comparison with other proposals on a representative workbench of
examples, as well as an empirical study concerning usability and efficacy with devel-
opers.

Acknowledgements

We would like to thank Juan-Pablo Gracia-Benitez by contributing to a preliminary
implementation of the framework. This work has been partially supported by the
BBVA Foundation (research grant HUM14_251) and by Santander-UCM GR3/14
(group number 962022).

References

1. Dehayni, M.; Féraud, L. An Approach of Model Transformation Based on Attribute Gram-
mars. Object-Oriented Information Systems. Lecture Notes in Computer Science 2817,
412-423. 2003

2. Grzegorz Rozenberg, Ed., Handbook of graph grammars and computing by graph transfor-
mation: volume I. foundations.: World Scientific Publishing Co., 1997.

3. Paakki, J. Attribute Grammar Paradigms – A High-Level Methodology in Language Imple-
mentation. ACM Computing Surveys, 27(2), 196-255. 1995

4. Sarasa-Cabezuelo, A.; Sierra, J.L.Grammar-Driven Development of JSON Processing Ap-
plications. FedCSIS 2013, 1545-1552. 2013.

5. Sarasa-Cabezuelo, A.; Sierra, J.L.The grammatical approach: A syntax-directed declarative
specification method for XML processing tasks. Computer Standards & Interfaces,
35(1), 114-131. 2013

230 Antonio Sarasa-Cabezuelo and José-Luis Sierra

SLATE’2015

